MAST-693 and CIEG-693
Homework \#1
due Feb.-24, 2020

1. (15 pts) Consider the two PDEs

$$
\begin{gathered}
\phi_{t}+\gamma \phi_{\mathrm{xxx}}=0 \\
\phi_{\mathrm{t}}+\gamma \phi_{\mathrm{xxxx}}=0
\end{gathered}
$$

Determine for each if (a) plane wave solutions (i.e., $\exp [i(k x-$ $\omega(\mathrm{k}) \mathrm{t}])$ are permissible or if not why not, and (b) if so, what is the dispersion relationship $\omega=\omega(\mathrm{k})$.
2. (15 pts) Consider the 3-D second-order wave equation

$$
\phi_{\mathrm{tt}}-\mathrm{c}^{2} \nabla^{2} \phi=0
$$

with plane wave solutions $\propto \exp [i(k x+l y+m z-\omega t)]$. What is the dispersion relation $\omega=\omega(\mathrm{k}, \mathrm{l}, \mathrm{m})$.
3. (20 pts) For the 1-D 2nd-order wave equation on $-\infty<x<\infty$, consider the initial condition $\phi(x, t=0)=\delta(x)$, where $\delta(x)$ is the Dirac delta function, and $\partial \phi(x, t=0) / \partial t=0$, what is the solution for $\phi(\mathrm{x}, \mathrm{t})$? [Hint: $\delta(\mathrm{x})$ can be thought of as the Fourier transform of $\phi(\mathrm{x}, \mathrm{t})=1]$

