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Section II.  LARGE-SCALE DYNAMICS 
  
 
 
 
Chapter 14  Rossby Waves 
 
 14.1  Barotropic waves in a uniform-density fluid.  The oceans and atmosphere are neither 
static nor do they circulate steadily or simply.  When disturbed, their fluid undulates in nearly 
horizontal currents which can oscillate to and fro, or can snake steadily in standing waves. The 
patterns of flow and concentrations of energy propagate systematically across vast distances. 
Waves and ‘mean’ circulation are intermeshed. The disturbance that creates waves may in fact 
come from within: internal instability leads to time-dependent currents that may be orderly or 
chaotic. Or, they may follow an event of external forcing, as when gales blow on the surface of 
the ocean. Following our discussion of motions with smaller scale, this should really be no 
surprise.  Fluids have many degrees of freedom, and most of them wiggle or undulate.  What is 
more of a surprise is that something like a wave exists which moves the whole body of the fluid, 
top to bottom, and only incidentally involves its upper surface.  

 
Particularly visible are the large-scale north and south meanders of the atmospheric 

zonal winds which are related to the ‘Rossby‘ or ‘planetary‘ wave.  These waves owe their 
existence to the rotation and spherical shape of the Earth. Much of the energy in weather 
patterns and the general circulation involves horizontal scales wider than the depth of the 
atmosphere: they are subject to the constraints of thin geometry and stable stratification 
described in Chapter 12 and 13.  Viewed from the side, a weather system is 100 to 1000 
times thinner (vertically) than its width. This extreme thinness, beyond reminding us of the 
fragile nature of the atmosphere,  causes horizontal winds to be stronger than vertical 
winds in such weather systems. Stable layering of the air, with its great variations in 
density reinforces this inequality.  Identical remarks apply to the ocean, its layering, 
thinness and long-wave activity. Small-scale internal gravity waves decorate these layers, 
yet here we are interested in waves of very large scale, that work on vorticity and rotation-
induced stiffness of the fluid. In many ways they are unlike familiar waves on the sea 
surface, or sound or light. 
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Rossby waves develop where there are large-scale variations in potential vorticity, 
all of whose components (relative vorticity, stretching and planetary vorticity) can be 
active. We have in Chap. 13 introduced the basic equations of balance and prediction for 
quasi-geostrophic fluids. These rely heavily on ideas of vorticity and potential vorticity.  In 
‘playing’ with point vortices in two dimensions and witnessing a mesoscale vortex 
response to stretching effects in three dimensions, we have set the stage for an entirely new 
aspect of the Earth environment: the potential vorticity variations at a larger scale, even to 
the scale of the planet.  This is a reflection in dynamics of the geography of the Earth: its 
nearly spherical shape and its landscape of mountains, continental rises and even more 
extreme topography of its sea-floor. It seems obvious that the shape of the planet should 
affect winds and ocean currents: yet the elegant way this shape is encoded in the potential 
vorticity is a wonderful gift of Nature and mathematics.  

 
  Beyond their connection with meandering zonal winds, Rossby waves relate to the 
oceanic ‘Gulf Stream’,  to climate variability propagating from the tropics during ENSO events, 
to more broadly to the structure of the meridional overturning circulations of both atmosphere 
and ocean,  and the atmospheres of other planets. Their role in shaping the large-scale 
circulation will be introduced in Chaps. 16 and 17.  They are a kind of ‘vorticity wave’, which 
occur in other forms in atmosphere and ocean, for example in small-scale instability of a shear 
layer, and in the vortex of a hurricane.  
 

Barotropic Rossby waves: the simplest case. The development of potential vorticity 
(PV) in the previous chapter demonstrated the importance of the vertical vorticity balance, 
even when it reflects the ‘stiffness’ of the fluid along lines that are not vertical, but instead 
lie parallel with the Earth’s rotation axis.  When the thickness, h, of a layer of fluid is 
constant, then  

    fζ + , 
the sum of relative- and planetary vorticity, is the active part of the barotropic PV (known 
as the absolute vorticity). We begin by considering a single layer of incompressible fluid 
(virtually like water) of constant depth. This idealization is in fact immensely powerful, 
providing solutions relevant to the more complex environment of the stratified atmosphere 
and ocean.   
 

Carl-Gustav Rossby, working at MIT in 1939, introduced the useful approximation 
for middle latitudes, known as the ‘beta-plane’. It approximates the spherical Earth locally 
by a plane tangent to it, allowing simpler mathematics using Cartesian coordinates to 
replace the full spherical geometry. Far from the tropics,  the Coriolis frequency can be 
approximated as 
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     02 sin( )f latitude f yβ= Ω ≈ +  
 
where y is the north-south position, measured from some mean latitude y0. There are errors 
both in the approximation of f and the neglect of the convergence of the meridians, which 
must be examined carefully.  
 
   Let us now use these ideas to construct a basic Rossby wave for a fluid otherwise 
at rest.   The momentum balance gives us equations in both horizontal directions,  x 
(eastward) and y (northward), for the corresponding velocity components u and v. If we 
ignore frictional effects and set up a wave with purely north-south motion,  u = 0,  the 
momentum equations express an east-west force balance between the pressure gradient and 
the Coriolis force (the geostrophic balance): 
  

 
   1

xfv p
ρ

− = −  

and a north-south force balance between acceleration per unit mass, and pressure gradient: 
 1

t yv p
ρ

= −  

Eliminating the pressure, p,  between these two equations gives a wave equation for v: 
    0xtv vβ+ =      (14.1)     

where β = df/dy, approximated as a constant in the equation. Assuming a wave of the form 
cos( )v A kx tω= −  we substitute in the wave equation to find 

     / kσ β= −      
This key relation between the wavenumber k (which is 2π divided by the wavelength) and 
the frequency σ  tells us that longer waves have higher frequency and that this frequency 
scales as σ/f ~ L/a, the ratio of the length scale of the wave (k-1) to the Earth’s radius a. 
The propagation speed, c,  (the phase speed) is westward relative to the fluid, with 
magnitude β/k2.  In more familiar wave systems, for example  non-dispersive sound 
waves, light waves or waves on a vibrating string, the frequency varies directly with 
wavenumber and the propagation speed c is a constant.  As we encountered with surface 
gravity waves and internal waves, dispersive waves turn a localized disturbance into long 
trains of sine-waves with gradually varying wavelength (as from a pebble thrown into a 
pond). By contrast, non-dispersive waves like sound and radio waves preserve the 
properties of isolated pulses, making possible communication to a great distance. 
 
If we add a uniform, eastward flow, U,  the advective acceleration changes Eqn  (14.1) to  
    

 

1
t x yv Uv p

ρ
+ = − , 

and the dispersion relation becomes  
     /Uk kσ β= −     (14.2) 
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as one might have guessed, the frequency is  Doppler-shifted by the mean current. The 
east-west phase speed is 
     2/ /c k U kσ β≡ = − .    (14.3) 
 
With β = 0 a wave is ‘frozen’ in the fluid (it does not propagate relative to the fluid), and 
then c = U as we expect. The special case c = 0 is particularly important in the atmosphere, 
where much of the forcing of the atmosphere is fixed in time or slowly varying.  Eqn. 
(14.3) is Rossby’s ‘trough formula’  describing the propagation speed of idealized long, 
north-south meanders of the westerly winds.  This simple equation, and the more complete 
theories that preceded it, by Hough, Goldsbrough and particularly Haurwitz, gave 
meteorologists a new way to think about developing weather. The meandering of jet 
streams, which are narrow, intense and baroclinic, is not well described by the theory at 
this stage, but Eqn. (14.3) with c = 0 is still a key limiting case of the more complex 
problem of stationary waves in the atmospheric circulation and the zonal circulation of the 
atmosphere and of the great Antarctic Circumpolar Current in the Southern Ocean.  
 
 Rossby waves involve fields of pressure and velocity in which the Coriolis force, 
directly and indirectly (through pressure) produces a restoring force for fluid that moves 
north or south. Being nearly in geostrophic balance, the pressure is nearly constant along 
streamlines, yet it is in subtle departures from this balance that pressure can accelerate the 
flow.  
  
 The principle of conservation of PV gives a clearer description of the restoring 
effect at work in Rossby waves. With a mean westerly wind,  air that moves northward in 
a standing wave pattern, conserving the sum ζ + f  will have to develop negative spin or 
vorticity, ζ, as it encounters smaller values of f found at high latitude.  This anticyclonic 
spin matches with the northward velocity, west of the parcel, and the southward velocity to 
its east (Figure 14.1), enforcing the basic wave pattern. In downwind regions where the 
wave has not yet penetrated, this spin will extend the pattern eastward at twice the speed of 
the mean westerly wind speed.   For fluid initially at rest, with no mean zonal flow, the 
same dynamics apply, and the graphical argument shows that the north-south velocity 
induced by the pattern of vorticity in Fig. 14.1 will cause the sinusoidal wave to propagate 
westward. 
 

     
Figure 14.1  Showing how a parcel of fluid moved northward in a standing wave, conserving its potential vorticity, ζ + f, 
develops negative (anticyclonic) spin, ζ, which affects fluid to the east and west, reinforcing the north-south motion of the 
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wave itself.  For the case of a fluid without a mean zonal current, the same argument shows that the pattern propagates 
westward relative to the fluid.  
  
   14.2  Topographic Rossby waves. It is essential at this point to give the waves the full 
freedom of 2- (and later, 3-) dimensions. We begin with the simplest case of a fluid with a 
bottom slope, on an f-plane (without the spherical β-effect).  Vorticity principles formed the 
derivation of the vertical vorticity equation, written for quasi-geostrophic flows in terms of the 
free-surface height, η, in Chap. 13 above.  Another connection can be made with the familiar 
long-gravity-wave equations, and the procedure also provides a relatively quick derivation of 
the final equations of section 13.2. We assume that nonlinear terms can be neglected in both 
momentum and mass-conservation equations.  Making the hydrostatic-pressure approximation, 
(with or without the small Rossby-number assumption used earlier), the horizontal velocity is 
independent of z, and the momentum equations become 

      t x

t y

u fv g
v fu g

− = − η
+ = − η

    (14.4) 

while mass-conservation becomes 
      (( ) ( ) )t x yhu hvη = − + .

 
    (14.5) 

where h = H + h’(x,y) + η(x,y,t). This is derived by noting that (hu, hv) is the lateral volume 
transport across a vertical section of the fluid, and flow divergence must be balanced by vertical  
motion at the free surface (Fig. 14.2). 

      
Fig. 14.2     Mass conservation relates horizontal variations of hu to vertical movement of the free surface. 
 
Alternatively, with u and v independent of z, 
      0x y zu v w+ + =  
we multiply by h, and use the boundary conditions w=ηt at z=0 and w=-uhx-vhy at z=-h to find 
the same result.  Form (h( (14.4)a))x+(h((14.4)b))y  which is known as a ‘divergence’ equation, 
describing the rate of change of the horizontal divergence of volume flux, ( )hu∇ •

G . Then form 
(h( (14.4))y + (h((14.4)b))x which is a vorticity equation. These combine with 
 +(1/g)(h( (14.5))x )x + (h( (14.5))y )y)  to give 
 

     2[ ] ( , ) 0tt tf gh gfJ hη + η − ∇ • ∇η + η =    (14.6) 
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(see also, e.g. Pedlosky, Geophysical Fluid Dynamics, 3.7). Here, as described earlier, J is 
the Jacobian operator, written in various ways as  
   

 
( , )ˆ( , )
( , )x y y x
a bJ a b a b a b a b z
x y

∂
= − = ∇ ×∇ • =

∂
 

  Scale analysis of the wave equation. Eqn.  (14.6) describes a wealth of waves, with 
both high-frequency and low-frequency.   If the wave frequency is much greater than f, the 
terms in the first set of brackets, with f =0,  give long, hydrostatic, non-dispersive gravity 
waves.   With h=constant, f≠0, Coriolis effects make these waves dispersive and provide a 
low-frequency cut-off at f.   More generally, if T is the time-scale of the waves (T= 
1/frequency), and L is their horizontal length scale (L=wavelength/2π), and H the mean 
depth, then scale analysis of the four terms in the equation gives, respectively: 

    
 

2

3 2 2, , ,f gH H gf
T T L T L

δη η η η  

where Hδ  is the typical size of topographic heights at the scale L. Motions at high 
frequency (small T) include long gravity waves, with Coriolis effects, and Kelvin waves: 
in this case the final term in Eqn. (14.6) can be neglected. Yet one can see that a new set of 
motions with low frequency may be possible by balancing the final term with the 2d or 3d 
term. In this case, the frequency will be 
    T-1 ~ fδ. 
For this choice of frequency range, the first term divided by the second term is just O(δ2). 
Evidentally, if the height of the topography (measured over the horizontal wave-scale L). 
is much smaller than the mean depth, then the first term is negligibly small, leaving the 
equation 
     2[ ] ( , ) 0tf gh gfJ hη − ∇ • ∇η + η =    (14.7)

   Let us choose a particular bottom topography, a simple up-slope to the north. Let  
    h = H + h’(x,y) + η(x,y,t) 
with h’ = -αy.  For small amplitude waves, η may be neglected in the expression for h. 
Then Eqn.  (14.7) becomes 
    

2
xx( ) ( ( ) ) 0yy y y t y xf g h h h fhτ− / η + η + η + / η − η =  

   2
xx( ) )( ( /( )) ) 0yy y t xf g y H y fα α α ατ− / η + (Η − η + η − − η + η =  

Scale analysis of this equation gives the following terms: 

   
2

2 2 2

( ) ( )f H L H L f
gT L T L T LT L T L

α α α αη + η + η η η η  

Earlier we saw that the topographic height divided by mean depth,  δ (=  αL/H) had to be 
small to achieve a balance involving  the new topographic term.  So here we neglect the 
small O(αL/H) parts of terms 2 and 3, and similarly neglect term 4 relative to terms 2 and 
3, giving 
      2

xx( ) ( ) ( / ) 0yy t xf gH f Hατη + η − / η + η =    (14.8) 
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which is the equation for topographic Rossby waves.  Its most important property is that it is 
linear:  two solutions added together give a third solution, and initial conditions with a 
complicated shape in x and y can be expressed as a sum of many Fourier components. Eqn. 
(14.8) has constant coefficients and thus will yield simple solutions for propagating plane 
waves.   
 
  Some Mathematical Background. How does this equation compare with those of classical physics?   
Linear second-order pde’s (partial differential equations) fall into three groups,  hyperbolic (e.g., the classic 
wave equation), elliptic (e.g., Laplace’s equation)  and parabolic (e.g. the heat-diffusion equation).  The classic 
wave equation for vibrating strings and membranes, long gravity waves on water and sound waves is hyperbolic 
with respect to space and time, 
   2

0 0xx yy ttc−η + η − η = . 
Wave-like solutions η  = Real( Aexp(ikx + ily - iσt ), after substitution in the equation, yield the dispersion 
relation 
   2 2 2 2

0 ( )c k lσ = +  
for which the phase speed,   2 2 1/ 2/( )k lσ +  is independent of both wavelength and direction of propagation. That 
is,  the waves are both non-dispersive and isotropic. The equation has characteristic curves, along which 
solutions propagate.  Isolated, pulse-like initial conditions ( a stone thrown in a pond) are prevented from 
dispersing into sinusoidal waves…Fourier components. A top-hat like wave can propagate without change of 
shape along a vibrating string; in two-dimensions it will decay in amplitude as it spreads out in a ring (leaving a 
narrow wake).  The stone thrown in a pond of course excites short gravity waves and even shorter surface-
tension waves (ripples), which disperse into sine-wave trains.  Text-books on waves are usually divided neatly 
into two sections: dispersive and non-dispersive waves, because the solutions and techniques for solving them 
differ so greatly (e.g., Lighthill’s text,  Waves in Fluids,  1978, Whitham, Linear and Nonlinear Waves, 
Addison-Wesley 1974).  
 
 Eqn. (14.8) does not fall neatly into one of these three categories, because it is formally a third-order 
pde.  However here (and with the classical wave equation), the time-variable is separable. Assuming sinusoidal 
time-dependence the remaining equation is of 2d order and elliptic in space variables x and y.  This too occurs 
when an exp(-iσt) factor is separated from the classic wave equation, leaving the Helmholtz equation,  
   2 2 2

0( / 0c σ∇ η + )η = . 
Elliptic pde’sk typically require boundary conditions ‘all-around’, for example on a boundary surrounding the 
fluid, for the solutions to be well-determined. Solutions however are readily found, both plane waves and for 
waves generated at a single point in space. These latter are ‘Green’s functions’, a sort of ‘impulse response’  for 
the wave equation, and are useful in building intuition for cause and effect in fluids. 
 
 Topographic Rossby wave solutions. Consider solutions in the form of a plane wave,  

  
Re( exp( )

Re( exp( ))
Re( exp( ( , , ))

A ikx ily i t

A ik x i t
A i x y t

σ

σ
θ

η = + −

= • −
=

G G
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‘Re(_)’ denotes the real part. The wavevector ( , )k k l=
G

 with its scalar wavenumber components k 
and l,  is perpendicular to the wave crests, which are lines of constant phase, θ(x,y,t).  
Substituting in the wave equation,  the physics of the problem boils down to the dispersion 
relation, connecting the wavenumbers and frequency.   
     2 2 2( / )

1/ BT

kf H
k l

σ α
λ

= −
+ +

    (14.9) 

where λBT
  = (gH)1/2/f is the Rossby deformation radius. Note that 

    λBT = c0/f 
 where c0 is the propagation speed of long gravity waves (with f=0); this definition of the 
‘Rossby radius’ turns out to be valid under much more general circumstances.  Because η does 
not vary along the wave-crests, along which the phase θ is constant, the horizontal velocity of 
the fluid lies nearly along the crests. This is suggested by geostrophic balance (because the 
pressure gradient is nearly parallel with k

G
. Or, the mass-conservation equation , ux +vy = 0 +  

O(δ),  also suggests the same thing, because when u and v are expressed in terms of the wave-
like η,  we have 0 ( )ik u O δ• = +

G G , again saying that the velocity lies nearly along the wave-crests.   
 
The dispersion relation, σ as a function of k and l (Fig. 14.3) is shaped like a ‘witch’s hat’, 
peaking near the origin.  Height contours of σ(k,l), show possible wave-vectors for a constant σ. 
These are circles tangent to the l-axis (see also Fig. 14.10).    
 

    
 
Fig. 14.3  Frequency σ as a function of wavenumbers (k,l) for topographic Rossby waves. The highest frequencies arise for the longest 
waves, near the origin. σ is constant along the solid circular curves.  The group velocity (double arrows) points inward toward the 
centers of these circles.  
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 Waves in a channel. A complete mathematical problem consists of both equation and 
boundary conditions. Here we add vertical walls to the topographic wave problem, at which the 
normal fluid velocity must vanish. Thus suppose 
   v = 0  at y = 0, L . 
The momentum equations show that v = (g/f)ηx + O(1/fT), so we will simply require that ηx 
vanishes at the two east-west running boundaries of the channel.  This will be achieved by the 
separable solution   
   

 
sin exp( )A ly ikx i tση = −  

if we choose  y-wavenumbers,  l =  nπ/L, for n = 1, 2,….  . The dispersion relation becomes 
    2 2 2 2 2( / )

/ 1/ BT

kf H
k n L

σ α
π λ

= −
+ +

 

The frequency rises to a maximum at  2 2 2 2 2/ 1/ BTk n Lπ λ= + , falling toward zero for both longer 
and shorter waves.  The curve is a cut through the two-dimensional Fig. 14.3, at fixed north-
south wavenumber, l.   Notice that the wave pattern always moves toward negative x (westward 
in this case), for σ/k < 0.  However the group velocity along the channel,  ∂σ/∂k, can take either 
sign; it is the slope of the σ(k) curve for a fixed value of n. Energy propagates westward in the 
longer waves and eastward in the shorter waves. 
 

   
Fig. 14.4  Topographic Rossby wave dispersion relation σ(k) for various north-south modes, n. All waves have k<0, and the longer 
waves to the right of the frequency maximum become non-dispersive in the x-direction as their wavelength increases. 
 
 There are several interesting limiting cases. For the shorter waves (that is, with large 
wavenumber) 
     / ;f H kσ α= −  
 the frequency varies inversely with k.  For the longest waves, as k =>0,  
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     2 2 2

/
/ BT

f H k
n L

ασ
λ −

−
=

+
 

the waves are non-dispersive; all waves in a single mode, n, and in this long-wave limit, 
propagate at the same speed, westward along the channel.  These waves have k << l, so that the 
gradient of the free-surface height, ∇η, points nearly across the channel (north/south), and the 
oscillating velocity field is directed nearly along the channel, u >> v.  For this example we have 
kept the Rossby Radius, λBT, large compared with the channel width, L.  If this were not so we 
would have a larger regime of non-dispersive waves moving west along the channel, in fact all 
wavenumbers obeying (k2 + l2)1/2 λ << 1 are non-dispersive.   Eqn.  (14.8), for this case, L >> 
λR,  simplifies to a remarkably simple 1st order pde:  
      ( / ) 0xg fατη − η =     (14.10) 
The general solution of this wave equation is westward propagation without change of shape: η 
= m(x + (gα/f)t), for an arbitrary function m(•).  
 
 14.3  ‘True’ Rossby waves on a spherical Earth. The discussion of potential vorticity 
dynamics in the previous chapter showed the importance of the vertical component of the 
planetary vorticity, 2Ω sin ϕ ≡ f, and its variation with latitude, which produces effects 
analogous to the topographic restoring effect and waves described above. We now return to the 
more general case of a spherical Earth (of course the Earth has an equatorial bulge, and hence 
more closely approximates an ellipsoid with complex topography superimposed on it. Given 
that the smoothed geoid deviates from a sphere, the radius in the Equatorial plane being about 
about 21 km greater than the radius to either pole; the mean radius, a, is about 6380 km. We 
shall neglect the difference). The momentum equations in spherical coordinates (λ,ϕ,r) are 
similar to their Cartesian (x,y,z) counterparts. Notation varies among different texts but here we 
let λ be longitude (positive eastward), ϕ be latitude (positive northward) and r radius (equivalent 
to a + z).  Corresponding velocity components are (u,v,w). They are derived in ¤Gill, secs. 4.12, 
11.2. Ignoring nonlinear terms, and setting the vertical velocity, w, to zero for this homogeneous 
fluid we have    

 

 

    

2 sin
cos

2 sin

1 { ( ) ( cos )} 0
cos

u gv
t a
v gu
t a

hu hv
t a

ϕ
ϕ λ

ϕ
ϕ

ϕ
ϕ λ ϕ

∂ ∂η
− Ω = −

∂ ∂
∂ ∂η

+ Ω = −
∂ ∂
∂η ∂ ∂

+ + =
∂ ∂ ∂

   (14.11) 

 Here  1 ( )
cosa ϕ λ

∂ •
∂

 plays the role of 
x

∂
∂

 because as the constant longitude meridians converge 

towards the pole, the scale factor (r cos ϕ) relates longitude to east-west distance.  Similarly the 
(r ϕ ) = y, the north-south distance. We have made the ‘thin-shell’ approximation, replacing r by 
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its average value a.  In two places we have neglected the horizontal component of Ω
G

, which is 
known as the ‘traditional approximation’: the x-momentum balance and the vertical momentum 
balance, which is assumed hydrostatic as usual; scale analysis shows that the approximation 

involves errors of order 
2

cotH
L

ε ϕ⎛ ⎞
⎜ ⎟
⎝ ⎠

 and hence is  adequate for the  unless one is close to the 

Equator; it relates to whether the fluid moves in columns that remain parallel to Ω
G

 or parallel to 
the local vertical direction.  As one sees in laboratory experiments, shear layers can form in this 
fluid along cylinders that touch the inner sphere at the Equator. In Batchelor’s Introduction to 
Fluid Dynamics (1967), Appendix 2¤ gives a useful discussion of coordinate systems and 
corresponding vorticity and divergence expressions. The easiest way to derive these expressions 
is to draw a small area element bounded by constant circles of latitude and longitude, and work 
out the volume inflow through the faces of this area (for divergence) and (for vorticity) the 
circulation u dl•

GG  integrated around its edges (where dl
G

is a vector line segment marking the 
boundary of this elemental area).  This integral is equal to the product of area of the element and 
vertical vorticity, by Stokes’ theorem. 
 
For simplicity consider the time-mean depth h to be constant. The curl of the momentum 
equations gives 

    
2

2 2 2 2

( / cos )( ( cos ) ) 0

(1/ cos )( ( cos ) )

( / 2 sin )
1 1{ (cos )}

cos cos

t f a u v v

a v u

g where

a a

λ ϕ

λ ϕ

ζ ϕ ϕ β

ζ ϕ ϕ

ϕ

ϕ
ϕ λ ϕ ϕ ϕ

+ + + =

= −

= Ω ∆η

∂ ∂ ∂
∆η ≡ + η

∂ ∂ ∂

   (14.12) 

Recognize that the second term in eqn.  (14.12)a contains the horizontal divergence (ux + vy in 
Cartesian coordinates). Using the mass conservation equation (14.11)c, the vorticity equation 
becomes 
    2

2

2((2 sin ) / ) 0gH
t t a

ϕ
λ

∂ ∂η Ω ∂η
∆η − Ω + =

∂ ∂ ∂
,    (14.13) 

which may also be written 
   2( / ) 0

cos
f gH

t t a
β

ϕ λ
∂ ∂η ∂η

∆η − + =
∂ ∂ ∂

 

where f = 2Ω sin ϕ, and  β = (2Ω/a) cos ϕ is the northward derivative of Coriolis frequency, f. 
Here the horizontal Laplacian in spherical coordinates is written ∆η.  This is the close analogue 
of Eqn. (14.8), for topographic Rossby waves over a plane bottom slope, as the second version 
of the equation shows plainly.  The full spherical problem, though complicated by the geometry, 
has a simple physical essence.  Eqn. (14.13) has elegant solutions on the sphere, described by 
Longuet-Higgins (1964).  One feature to note is that by looking for solutions that propagate 
westward without change of form, or equivalently going to a reference frame that rotates more 
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slowly than the Earth, the wave equation in the non-divergent limit, L/λR << 1,  becomes 
simplified. Try a solution of the form 1)t c tλ ϕ λ ϕη( , , = η( + , )� , and (14.13) becomes,  

    2
1

2 0
c a

Ω
∆η + η =� �  

which is Helmholtz’s equation with a constant coefficient,  giving the spatial form of 
sinusoidal (in time) oscillations of a spherical membrane.  The value of such statements is 
that we can imagine elastic waves and this provides some confidence in the existence of 
Rossby waves!  The β-plane version of this statement is simply that all Rossby waves of 
the same wavelength (yet propagating in many different directions), have the same 
westward phase speed, and hence appear stationary to an observer moving westward at 
that speed.  
 
  Both topographic Rossby waves and ‘true’ Rossby waves originate in the conservation of 
potential vorticity for a homogeneous fluid, as we describe in the next section.   
 
 
  Potential vorticity (PV) description of Rossby waves.. The Rossby wave equation is an 
expression of the conservation of PV for small-amplitude, low-frequency motions. The PV 
expression for uniform mean depth, linear Rossby waves, is 
     ( / ) 0D f f H

Dt
ζ + − η

=      (14.14) 

which is found by substituting for ∂η/∂t in eqn.  (14.13), using mass conservation, eqn  (14.11)c.  
In spherical coordinates the time-rate of change following the fluid is written ¤ 
    

cos
D u v
Dt t a aϕ λ ϕ

∂ ∂ ∂
= + +

∂ ∂ ∂
 

It is straight-forward to derive the most exact and general form of potential vorticity 
conservation.  Kelvin’s circulation theorem, or equivalently the radial (‘vertical’) vorticity 
equation, shows that, following inviscid motion of a constant-density fluid,  

     
0;Dq

Dt
f absolute vorticityq

h h
ζ

=

+
= =

    (14.15) 

This was discussed at the end of Chapter 13.  It is equivalent to conservation of the absolute 
angular momentum of a small disk of fluid lying horizontal (parallel with the surface of the 
sphere) provided that the disk has circular cross-section.   As the thickness h of the disk 
increases, its horizontal area decreases in proportion, and with a decreased moment of inertia, it 
spins faster (as seen by a non-rotating observer ‘off’ the planet).  Fluids deform, however, so 
that for fluids, potential vorticity conservation is a more general and far-reaching principle, than 
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angular momentum conservation.  Eqn.  (14.14) is a small-amplitude approximation to (14.15), 
with h = H+η.  
  
 There are some subtleties. As the fluid moves on the sphere, this formulation assumes that a small 
horizontal disk of fluid will remain nearly horizontal. By making its width L much greater than the depth, h, this 
is a good approximation for a ‘thin’ ocean on a sphere.  However, we earlier gave an argument for steady 
circulations that invoked the ‘stiffness’ of the rotating fluid along lines parallel with the rotation axis.  This gave 
the correct results for slow circulations, as governed by the ‘Sverdrup relation’ yet would give the wrong answer 
for Rossby waves.  The thin spherical shell ‘wins’ over the ‘stiff column’ constraint, provided that the motions 
indeed are much broader than the depth of the fluid.  If we derive the Rossby wave dispersion relation assuming 
columns parallel to Ω

G
 remain parallel as they move north or south, it is grossly in error, as a disk of fluid 

initially horizontal  would not under this assumption remain horizontal enough as it moves.  In a confusing 
situation like this one can look to laboratory experiments for help.  In a rotating experiment with homogeneous-
density fluid in a spherical shell, the ‘stiff columns’ which form parallel with the axis of rotation cause peculiar  
dynamical effects near the Equator, particularly with a cylindrical shear layer oriented parallel to  Ω

G
, hence 

nearly horizontal for observers near the Equator.  These effects come from Coriolis terms neglected in eqn. (5.6) 
where it was assumed that w=0.  Neglect of the horizontal component of Ω

G
 is known as the ‘traditional 

approximation’, and it relies on the thinness of the spherical shell, which singles out the vertical component of 
the Earth’s rotation vector.  
  
 14.4  The β-plane.  For Rossby waves with length scale (k2 + l2)-1/2 smaller than the 
Earth’s radius,  we can approximate the spherical coordinates by Cartesian coordinates in a 
plane tangent to the sphere as suggested in Sec. 14.1.  This was Rossby’s (1939) brilliant 
insight, which gave meteorology a strong and useful theory of the waves in the westerly winds.  
Thus writing dy = a dϕ and dx = a cos ϕ dλ,  we return exactly to Eqn. (14.8),   
    2

xx( ) ( ) 0yy t xf gH βτη + η − / η + η =    (14.16) 
where β takes over the role of the bottom slope, fα/H.   This is the β-plane equation for Rossby 
waves.  It has three forms: for the mid-latitude β-plane, f is taken to be constant (except where 
differentiated), equal to 2Ω sin ϕ0, where ϕ0 is the central latitude of the region of interest. β is 
likewise taken to be constant, 2Ω cos ϕ0/a. Errors in making this approximation are typically of 
order L/a.   For the polar β-plane one adopts a cylindrical geometry centered on the North or 
South Pole, and f is expanded in a Taylor series, as 21

0 2 ( )rf f
a

= −  where r is distance from the 

pole.  For the equatorial β-plane, our origin for y is the Equator itself, and we take 
    f ≅ βy = 2Ωy/a 
so that β = 2Ω/a, again a constant.  Notice that now the vorticity equation (14.16) has a non-
constant coefficient, proportional to y2.  This makes it the Schrödinger equation of quantum 
mechanics, and suggests the ‘potential well’ solution  known as the parabolic oscillator.  Indeed, 
the Equator is a wave-guide not unlike the channel model derived for Eqn. (14.8).  Waves 
propagate along the Equator while being trapped north-south by the increase of the Coriolis 
frequency, with latitude.  Because the convergence of the meridians of longitude is slightest at 
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the Equator,  the equatorial β-plane is a more accurate approximation (O(L/a)2) than the mid-
latitude β-plane (O(L/a)), which is a reason for being familiar with the full spherical form of the 
equation.   We should note that the equatorial region has a crucially important Kelvin-wave 
mode which is missed by this low-frequency analysis, yet can be recovered by going back to the 
equatorial version of equation  (14.6). Equatorial waves are discussed further at the end of this 
chapter. 
 
 The non-divergent approximation and introduction of the stream-function. For waves 
with length scale much smaller than the (external) Rossby deformation radius, L << λ, the ‘free-
surface’ term in the wave equation (14.16)  can be neglected.  At the same time, the pressure and 
free-surface elevation are nearly proportional, and both act as a stream function for the 
horizontal velocity, with accuracy of order Rossby number, ε (see Chap. 12),  
     u z ψ≡ ×∇

G G  
In this limit the Rossby wave equation is 
 

     xx( ) 0yy t xψ ψ βψ+ + =      (14.17) 
 
 14.5 Energy propagation and wave-packets: review of group velocity.   A property of 
dispersive waves is that their energy does not generally move with the individual wave-crests.  
Surface gravity waves are a familiar example, discussed in Sec. I of this text, in which the wave 
groups or wave ‘packets’ move with ½ the speed of  wave-crests.  This means, for example that 
you can surf on the wake of a ferry-boat, because the narrow ‘vee-shaped’ wake is comprised of 
individual wave-crests that move forward through the wave-packet, increasing in size and then 
disappearing at its leading edge. There is a continual supply of new waves to lengthen your ride.  
The basic phenomenon is evident in just two sinusoidal wave components of the form η = 
sin(kx - σt), with slightly different wavelengths, which together produce an interference pattern,  
wave-packets well-separated by nearly still water,  
    1 1 1sin( ) sin( ) 2sin( )cos( )k k x k k x k x k xδ δ δη = − + + =  
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Fig. 14.5  Wave packets formed by adding just two sinusoidal Fourier components. Individual waves move with the phase 
speed, while the groups move with the group velocity.  
 
The number of waves in each packet is approximately 10 in this example, and this is just equal 
to ½k1/δk. Now consider the propagation of the pattern with time. With 

     
   

2
1 1( ) ( ) (( ) )k k k k O k

k
σσ δ σ δ δ∂

+ = + +
∂

 we have 

 1 1 1sin(( ) ( ) ) sin( ) ( ) ) 2sin( ) cos( ( ))k k kx k k x k t k k x k t k x k x tδ σ σ δ δ σ σ δ δ ση( , τ) = − − − + + − + = −  
which is shown in a contour plot in Fig. 14.6.     
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Fig. 14.6  x-t (Hoevmueller-) diagram showing wave-packets propagating to the right (time increases upward). Here we chose the 
group velocity to be ½ the phase velocity, as with short surface gravity waves; dX/dt is inverse to the slopes seen, so that the wave-
crests move twice as rapidly as the wave-packets. Each moving group could be the wake behind a moving boat. 
 
 This pattern can be animated ‘by hand’, after copying Fig. 14.7 once on a transparency 
and once on white paper.  Line up the two figures with the black bars (‘wave-crests’) parallel, 
and slide them apart, keeping the bars parallel.  The interference pattern moves at a speed 
different than the speed of the individual wave-crests.  Notice that the figure has a slowly 
varying wavelength from top to bottom.  The group velocity, cg,  of the wave-packets, relative to 
phase speed, c,  depends on whether the longer wave has faster or slower c; this will change as 
the patterns are moved apart. The relevant formula is, for propagation in one dimension, σ=ck,  
     

 g
cc c k

k k
σ∂ ∂

= ≡ +
∂ ∂       (14.18)

 

 As the sheets are displaced relative to one another, the movement of the interference pattern 
depends on whether the longer wave has faster or slower speed, c, than the shorter wave. Notice 
that as you hold the transparent sheets you are ‘moving with the average speed of the wave-
crests’ so that it is the final term k∂c/∂k that is at work in moving the interference pattern.   
 
 Rossby-wave group velocity.  In two or three dimensions, energy propagates with the 
vector group velocity,  ( , )gc

k l
σ σ∂ ∂

=
∂ ∂

G . This is the gradient of the function σ(k,l) which is drawn 

with arrows on Fig. 5.2, perpendicular to the curves of constant frequency, pointing inward 
toward high frequency.  Differentiating the dispersion relation we find 

     

2 2 2

2 2 2 2

2
2

2 2 2

( , 2 )
( )

(cos 2 ,sin 2 )
( )

g
k l klc

k l

K
K

λβ
λ

µ λ µβ
λ

−

−

−

−

− −
=

+ +

−
=

+

G

    (14.19) 

 
where polar coordinates have been introduced, (k,l) = K(cos µ, sin µ).  For waves much shorter 
than the Rossby radius, 1/λ2 can be neglected and the group velocity has a magnitude β/K2 
(=σ/k) and direction 2µ. 
     
 The fact that the group velocity for anisotropic waves is not directed parallel with k

G
 can 

be seen using the Moiré pattern transparency.  Hold the two sheets so that the bars are no longer 
parallel, and the interference bands (the energy) will move at a steep angle to the wave crests. 
Again remember that as you hold the figure you are ‘moving with the phase velocity c’.  The 
movement of the interference bands tells us one component of the group velocity; to see both 
components one can take three such sheets (at least two being transparent) and form 2-
dimensional wave-packets.  Moving them according to the ‘rules’ of the dispersion relation 
demonstrates the full vector group velocity (though it requires some dexterity!).  
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 Fig 14.7  When this figure is copied onto a transparency, and a second copy on white paper,  superposing the two will 

generate moving wave-packets as Moiré patterns. 
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Fig. 14.8  Moiré pattern for two waves whose direction of phase propagation is slightly different. As the two images are moved 
vertically relative to one another the positive interference bands move, in this case to the left or right.  This shows that energy 
propagation, corresponding to the movement of bands of positive intereference, occurs in a direction different from the phase 
propagation which is vertical in this picture. The phase speed of Rossby waves varies with both wavelength and direction of 
propagation, and the energy moves in a direction 2µ, where the direction of the wavevector is µ, measured from East. (Eqn.(14.19) . 
 
  14.6  Summary of barotropic Rossby wave properties.  The waves are: 
•   dispersive (the phase speed varies with wavelength), although waves much longer than the 
¤Rossby Radius, λBT, are non-dispersive,  σ ≅ -βkλ2.  For waves much shorter than λBT, the free 
surface is effectively rigid, and the wave equation becomes 
      2 0t xψ βψ∇  + =  
Here we have used the streamfunction ψ as dependent variable, recalling that in the quasi-
geostrophic, barotropic theory, the free surface height, pressure perturbation, and streamfunction 
are all proportional to one another, f0ψ = gη = p’/ρ;  
•   anisotropic (the phase speed and frequency vary with direction of propagation, even for a 
fixed wavelength).  
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•   have wavecrests with westward movement of phase along latitude circles, σ/k < 0.  This also 
describes the topographic waves calculate above, if the topography slopes upward to the north; 
adjust accordingly for other orientations of the slope, so that the wavecrests always move with  
shallower water to their right.  The gradient of f/h is the generalized β-effect for topographic 
Rossby waves. 
•  energy propagation, with group velocity  
 ( , )gc

k l
σ σ∂ ∂

=
∂ ∂

G  

is directed at twice the angle of the wavevector, as measured with respect to East, and its 
magnitude is equal to the westward phase speed, 2/ | |kβ

G
. The group velocity, gcG , is the gradient 

of the surface σ(k,l), hence is perpendicular to the contours of constant frequency, pointing 
toward higher values of σ;  
•  they are ‘vorticity waves’ which are nearly non-divergent (the horizontal divergence, ux+vy is 
small,  
 O(Ro) compared with vorticity ζ = vx - uy); 
•  they are nearly geostrophic, ut << fv or gηx; 
•  their frequency increases with wavelength; 
•  the vertical vorticity, ζ = (g/f)∇2η; 
•  the horizontal velocity is related to the free surface slope according to (5.1),  

    2 2 2 2;y x x yf i f i
u g v g

f f
σ σ

σ σ
− η + η η + η

= =
− −

 

The high- and low-frequency limits of these expressions speak for themselves. 
•  the ratio of potential energy, ½ gη2 ,  to horizontal kinetic energy,  ½ ρ(u2 + v2), varies as 
L2/λT

2, L being the horizontal length scale.  
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Fig. 14.9.  Space-time (‘Hoevmueller’) plot of  meridional velocity against longitude and time, from the MODE-73 experiment in the 
western Atlantic near 30N.  This is possibly the first sighting of Rossby waves in the ocean.  Time progresses downward, and the phase 
of the 100km scale eddies moves westward at about 5 cm sec-1.  Freeland et al. (1975). 
  
  14.7  Reflection of a Rossby wave at a north-south boundary.  If a meridional boundary, a 
straight, vertical wall, lies at x = 0, then a Rossby wave traveling westward toward it will be 
reflected.  The boundary condition u=-∂ψ/∂y=0 at x=0 is satisfied by adding a reflected wave 
with just the right k, l and σ.  Write 
    exp( ) 'exp( ' ' ' )A ikx ily i t A ik x il y i tψ σ σ= + − + + −  
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where the primes indicate the reflected wave.  We require at x=0 
    (exp( ) ' '(exp( ' ' )ilA ily i t il A il y i tσ σ− = − −  
For this to be satisfied at all times and all y, we must have l=l’, σ=σ’, A=-A’. This leaves us the 
two values for k and k’,  
 2 2 2 2 1/ 2/ 2 ( / 4 )k lβ σ β σ λ −= − ± − −  
 found by drawing a horizontal line through the wavenumber curve for this frequency and 
y-wavenumber.  The incident wave has westward group velocity, and is longer than the 
reflected wave (|k|<|k’|).   This explains the patterns seen in numerical models of Rossby 
wave propagation, long waves rapidly propagating west to the boundary and short waves 
propagating back eastward, much more slowly.  Now the amplitudes of the streamfunction 
for incident and reflected waves are the same, but the velocity is proportional to the 
gradient of ψ or η, and hence the reflected wave will be more energetic, by a factor (k’/k)2.  
This works so as to conserve energy flux, which is energy density multiplied by group 
velocity. 
 

 
 
Figure 14.10   Incident and reflected Rossby waves at a north-south rigid boundary; wavevectors are thin arrows and 
corresponding group velocities are filled arrows.  The group velocity reflects symmetrically about the normal to the boundary, 
yet the reflected wavevector is longer than the incident wavevector, so that the reflected wavelengths are shorter.   
 
 Because frictional/turbulent damping of Rossby waves can be important, the slower 
propagating waves will be affected most strongly.  This means that energy will propagate 
rapidly across the ocean to the western boundary and reflect, yet will dissipate before 
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propagating far from the boundary.  Energy ‘piles up’ in small-scale currents and 
dissipates near western boundaries of oceans.  Indeed, the level of eddy kinetic energy is 
observed to be higher in these regions than in mid-ocean.   
 
 A generalization of the effect of boundaries on β-plane fluid. When one encounters a 
strong prediction of theory like this one, there is the temptation to see if it may be more 
general. Linear wave theory and its limits are examined later, in Chap. 17.  As a precursor 
of these ideas, consider the conservation principle for enstrophy (enstrophy, introduced in 
Chap. 13, is squared vertical vorticity, or potential vorticity depending on circumstances).  
For a barotropic β-plane fluid surrounded by rigid boundaries, the inviscid PV equation is 

    
2 2

( ) 0

( , ) 0t x

D f
Dt

J

ζ

ψ ψ ψ βψ

+
=

∇ + ∇ + =
 

with the free-slip condition,  
    0nψ∇ × =�  
applied on the boundary, C, where the outward normal unit vector is  n� .  Multiply this 
equation by ∇2ψ and integrate throughout the fluid, over the area A, with the result 
    2 21

2 | | sin B
A C

d dx dy KE ds
dt

ψ α∇ = −∫∫ ∫v     (14.20) 

where KE = ½ |∇ψ|2 is the kinetic energy and αB is the angle of the boundary, with respect 
to East. The righthand side of the result follows from integrating ψx∇2ψ by parts and 
applying the free-slip boundary condition.  Enstrophy has smaller spatial scale than 
energy, for motions with a broad spectrum (the enstrophy spectrum is the energy spectrum 
multiplied by (k2+l2), equivalent to a high-pass filter in wavenumber space).  Eqn. (14.20) 
says that even though the total energy in fluid is constant (absent dissipation and forcing), 
energy in the fluid at a boundary lying to its east will decrease the total enstrophy, while 
energy in fluid at a boundary lying to the west will increase the enstrophy.  This is true for 
turbulent motions, circulation and waves and represents a generalization of the Rossby 
wave reflection property discussed just above.  The ratio of total energy/total enstrophy is 
a length squared, an average measure of length scale of the currents and this changes with 
time. The result is also a precursor to the existence of narrow, intense western boundary 
currents, to be discussed in Chap. 15.  
 
 14.8  Rossby waves generated by a point source of pv: Green’s function.  A single, 
plane wave is an elegant solution of the equations. As remarked in Section I of this book, 
the dispersion relation sums up the physics of the problem, and allows spatial structure of 
an initial pattern of flow (determined by its amplitude for different wave-vectors, k

G
) to be 

calculated into the future (with the time-dependence following from the unique frequency, 
ω, associated with each k

G
).  In dispersive wave systems, a compact forcing region sends 



 23

out waves which sort into these Fourier components as we saw with Kelvin’s solution, the 
‘impulse response’ for a gravity wave field produced by an initial disturbance of very 
small spatial extent. 
 
 That ‘impulse response’ is a complementary approach to the consideration of 
individual plane waves: the field of waves produced by a small region of forcing, so small 
that it is represented by Dirac’s delta function, say δ( xG ).  The delta function is simply a 
limiting case of a tall, narrow function that preserves the volume beneath it as it is made 
ever narrower.  A frequent choice is the Gaussian function, 
   2 2

0
( ) (1/ ) exp( ( / ) )lim

a
r a r aδ π

→

= −   

Limiting sequences of functions of this kind are sometimes known as ‘generalized 
functions’; they play a fundamental role in making Fourier transform theory, and hence 
wave theory, more rigorous (e.g., Lighthill, 1958).  
 
 For convenience we suppose the forcing is at the origin, xG=0. The forcing can also 
be impulsive in time, and ‘explosive’ δ( xG )δ(t), or it can be oscillatory with a single 
frequency, δ( xG )exp(-iω0t).  Waves propagate outward from the origin, filling the space 
until they encounter a boundary or are damped by friction.  Such solutions are also known 
as ‘Green’s functions’, and there is considerable mathematical development associated 
with them.  In geophysics,  where one is interested in the first and largest waves related to 
an earthquake or tsunami,  they are sometimes called ‘propagators’.   In ocean/atmosphere 
fluids such solutions have been thoroughly described by Dickinson (1966).   
 
 We want to solve the forced wave equation, 
    2

0( ) exp( )t x F x i tψ βψ σ∇  + = −
G  

for the choice of forcing function 
    ( )F rδ= . 
To do this, notice that a change of dependent variable converts the left-hand side into a 
Helmholtz equation: let 
    0 0( , ) exp( / 2 ) )x y i x i tψ β σ σ= Φ − −  
Substitution gives immediately  

    
2 2

0

( )
/ 2

xκ δ
κ β σ
∇ Φ + Φ =

≡

G
 

The equation has been rendered isotropic (independent of direction), and essentially the 
same as for waves on a membrane excited by an oscillating, impulsive force.  Exploiting 
this isotropy, we look for solutions depending on radial coordinate, Φ(r) only, and we 
write the equation in cylindrical polar coordinates (r,θ) : 
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    2 ( )rr r r
r

κ δ1
Φ  +  Φ + Φ =  

This is Bessel’s equation, one of the classic equations of mathematical physics. It is here in 
its isotropic form; more generally Bessel’s equation allows for structure in the azimuthal, 
θ- direction. It arises in many problems of waves with cylindrical geometry (this choice 
may be dictated by either the shape of the boundaries or the forcing effect).  The solutions 
are the sine-waves of cylindrical geometry and like standing and traveling sine-waves they 
come in a family.   J0( r), Y0(r), H0

(1)(r), H0 
(2)(r),  correspond respectively to the more 

familiar cos(r), sin(r), exp(-ir), exp(+ir) wave solutions in Cartesian coordinates.  How is 
the choice made? As usual, by applying boundary conditions, in this case what is known as 
the radiation condition, stating that the waves must carry energy outward, away from the 
wave-source, at large r (we could contrive a wave-maker at large r that would send waves 
inward, we could be in a circular ocean basin whose coast would reflect the waves).  
Consulting Abramowitz and Stegun (1970) or another source of formulae for mathematical 
functions, we find that at large radius, Bessel functions have the following asymptotic 
forms for kr → ∞: 

   
0

1/ 2 1
0 4

1/ 2 1
0 4

(1) 1/ 2 1
4

(2) 1/ 2 1
0 4

( ) ~ ( / ) cos( )

( ) ~ ( / ) sin( )

( ) ~ ( / ) exp( ( ))

( ) ~ ( / ) exp( ( ))

J kr kr kr

Y kr kr kr

H kr kr i kr

H kr kr i kr

π π

π π

π π

π π

−

−

−

− −

 

showing a simple relationship with ordinary sines and cosines; the r-1/2 decrease in 
amplitude with increasing radius follows from the spreading of wave energy in space, far 
from the origin.  The right solution is now apparent: referring to Fig. 14.3, notice that the 
projection of its group velocity on the wave-vector is always negative, so that a wave 
propagating energy outward will have phase moving inward along the radial direction.  
Inward phase propagation occurs only for the choice  
   (2)

0 ( )H rκ  
 and hence the total solution for this wave problem is 
   (2)

0exp( ) ( )i x i t H rψ κ σ κ= − − .    (14.21) 
At large distance from the origin (relative to the wavelength), the Green function becomes 
   / 2 exp( ( ) )r i x r i tψ π κ κ σ= − + −    (14.22) 
Curves of constant phase, κC,  are  
 

    
2

(1 cos )
( 2 )

x r C
r C
y C C x

θ
+ =

+ =

= −
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which are three ways of writing a set of parabolas whose foci are 3
8

x C=  (the value of C 

selects which wave-crest we are watching).  An animation of the wave-field (Fig. 14.11) 
shows the wavecrests to sweep westward while collapsing on the negative x-axis.  The 
phase of each wave-packet making up the pattern has a westward component.   This 
solution makes a good case for the value of theory.  We could have stopped after deriving 
the group velocity, and done numerical simulations of Green’s functions by computer.  But 
in doing so we might have missed the simple structure, the parabolic wave crests, and 
unless we did many such simulations, missed the importance of the length-scale parameter 
κ-1 ≡ (β/σ0)-1. The study of classical functions like Bessel functions and the corresponding 
functions arising in spherical geometry blossomed in the 19th Century, long before 
computers were available.  They helped provide a firm basis in theory for physical 
dynamics in natural science and technology, where differential equations are often the 
governing theory. Using Matlab, Mathematica or other mathematical software one can 
explore the functions very easily, animate the wave-field. In particular, the simple 
asymptotic forms for small and large argument overlap nicely, allowing wave theory to 
proceed more easily. 
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Fig. 14.11 Rossby wave pattern, Eqn. (14.21), created by an oscillating, small disturbance at the origin. Plotted is the pressure, 
or free-surface elevation η, or streamfunction ψ, at a particular time, as seen from the southwest (negative y, negative x).  The 
parabolic wave-crests (see as contours on the base plane) sweep westward with time, closing in on the negative x-axis. 
  
  A meridional boundary can be included in this theory, for example a north-south 
wall lying to the west of the forcing point.  The method of images is a technique of 
classical mathematical physics, where one uses ideas of symmetry to add a boundary to a 
flow field.  Here, if the oscillatory wave source is placed at the point (A,0)  we place an 
identical ‘image’ source of Rossby waves at the point (-A, 0). Adjusting the phase properly 
will create a line along which the zonal velocity, u, vanishes at all time.  Now, the ‘twist’ 
is that our Rossby-wave Green function is anisotropic, so that the image source produces 
much shorter Rossby waves in the vicinity of the wall, those that radiate eastward from x = 
-a, than does the direct source. And, the amplitude of the currents, spatial derivatives of ψ,  
from the image source near x = 0 is much greater than that of the direct source because of 
this contrast in wavelength.  This simple construction provides yet another generalization 
of the reflection properties of Rossby waves at a rigid lateral boundary. 
  



 27

 
 
 Energy conservation can be verified for this solution.  A wave packet, which is a 
plane wave tapered off to nothing after many wavelengths,  move with the group velocity 
and their energy must move with them (because they are isolated concentrations of energy 
surrounded by emptiness).  As described in Sec. I, the product of energy density E  and 
group velocity gcG equals energy flux, 
    E gF c=

G G
E . 

The energy equation  
    ( ) 0t + ∇ • =G

gE Ec  
for a ‘statisitically steady’ wavefield, whose amplitude is not changing with time, says that 
the integral of the energy flux component normal to a bounding surface, over the entire 
surface, should equal the constant rate of supplying energy to the wavefield at the origin,  

    
2

0

ˆ .F r r d const
π

θ =∫
G
i   

where r̂  is a unit vector directed along the radius.  Here, with negligible contribution of 
the free-surface potential energy, the energy density is 21

2 | |ψ∇  per unit mass. In the far 
field, κr >> 1, the gradient of ψ is dominated by the wavy exponential, and not the gradual 
variation in amplitude.  Differentiating the exponential factor in Eqn. (14.22)  
   2 2 2 2 21 1 1

2 2 2| | | | | | ( ) ( / )2 (1 cos )k O r rρ ψ ρ ψ κ ρ π κ κ θ∇ = + = +
G

E =  
Energy propagates directly outward from the source, and therefore the group velocity 
points radially outward everywhere. Its magnitude 2| | / / | |gc k kσ β= =

GG   varies inversely with 
wavenumber squared, which makes the  product E gF c=

G G
E   isotropic!  Despite all of the 

strange anisotropies of Rossby waves, energy radiation from an oscillating point source is 
independent of direction. The energy flux total  outward is just 1

02 / /r rρβπ κ πρσ= , and its 
integral over all directions 2πr times this, or 2

02π ρσ , independent of r, so that energy is 
conserved. 
 
 For a wave-maker at an arbitrary postion 'xG  we write the Green function 
symbolically as ( , ')G x xG G . This allows us to express the wave field for a forcing function of 
arbitrary shape and size, for in this self-adjoint equation it may be shown that the solution 
of Eqn. (14.21) is  
    ( ') ( , ') 'F x G x x dxψ = ∫∫

G G G G . 

where the integration is over the entire fluid.  This is the power of Green’s function, that it 
gives the solution for waves forced by a wave-maker of complicated form,  in terms of 
wave solution for a single, small isolated wavemaker.  In words, ψ is the convolution 
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integral of F and G.  The wave equation is linear, and here we are superposing an infinity 
of Green-function wave patterns, each generated at a different location by the forcing 
function with amplitude given by ( )F xG .  Valuable insight follows: since the delta function 
is only infinitesimally wide, we want to know what a forcing effect of finite size will 
produce.  The theory of Fourier transforms (Appendix 4) tells us that the transforms of  

( ), ( ), ( )x F x G xψ G G G  call them ( ), ( ), ( )k F k G kψ
G G G��� , are related as a simple product: 

    ( , ) ( , ) ( , )k l F k l G k lψ = ��� .      (14.23) 
We can now visualize the Rossby wave field generated by a forcing region of finite size, 
by overlaying the two transforms on the wavenumber plane. Because it involves the 
product of transforms in Eqn. (14.23), the solution only has substantial amplitude for 
wavenumbers where both F�  and G�  are non-zero.  As we learn from the example of the 
Gaussian bell-curve (also see Appendix 4), the Fourier transform of a compact function 
with length-scale L is concentrated at wavenumbers less than or equal to 1/L. Because the 
locus of Rossby wavenumbers for the frequency σ0 extends only to wavenumbers of 
magnitude ≤ β/σ0.  If, for example, Rossby waves are generated by forcing with an 
oscillating wind of horizontal scale L, decreasing the frequency σ0,  so that σ0/βL << 1,   
will pick out predominantly waves west of the forcing region, and these waves will 
resemble slowly oscillating zonal currents. This is illustrated in Fig. 14.¤.    
 
 Transient Rossby waves occur when forcing is suddenly switched on, or otherwise 
radiating from an initial condition without further forcing.  The wave pattern then involves 
a spectrum of frequencies, rather than the single frequency in Fig. 14.11. An initial 
condition in the form of a circular eddy evolves as shown in Fig. 14.12: a ‘weak’ eddy 
‘explodes’ into Rossby waves (whereas an eddy with greater velocity will remain coherent 
longer, resisting Rossby-wave radiation).  
 

 
 
Fig. 14.12 An initially specified velocity field in the form of a circular eddy radiates Rossby waves (barotropic, β-plane with 
periodic boundary conditions, so that westward radiation re-enters the domain from the east).   
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 Numerical simulations of this kind are readily carried out, even on a lap-top 
computer. Some sample codes to achieve this are included in Appendix ¤.  
 
 Rossby waves can be produced in the laboratory, using variations in depth to 
provide a large-scale PV gradient analogous to the β-effect.  The simplest method is to let 
the paraboloidal free surface of a rapidly spun fluid in a cylinder provide essentially a 
polar  β-plane.  With excitation sinusoidal in time, at a point in space, the field is 
dominated (Fig. 14.13) by eastward propagating short Rossby waves, when visualized by 
the movement of rings of dye. When instead the velocity field is observed using fine, 
floating metallic particles, the long westward-propagating waves are visible, with wave-
crests that spiral in toward the Pole.  Animations show the ‘elasticity’ of the fluid provided 
by PV gradients, with Jello® like oscillations communicated throughout the domain 
(Rhines, 2003b), and also with the elasticity inhibiting mixing of the ‘ozone hole’ at the 
Pole. 
  
 

  
 
 
Figure 14.13.  Rossby waves in the laboratory, as if viewed by a satellite above the North Pole. The wave 
source is at the lower left, and oscillating body. There is no pre-existing circulation, but the waves induce 
easterly flow at most latitudes, and westerly flow at the latitudes near the forcing (as seen in the dye 
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drawn into circles). At the North Pole, the red dye remains unmixed by the strong wave activity. (Rhines 
(2003), Geophysical Fluid Dynamics Laboratory, University of Washington.)  
 
 
  14.9  Rossby waves in a zonal current. In the Southern Ocean the Antarctic 
Circumpolar Current (the greatest of ocean currents, by many measures) flows eastward 
beneath the strong zonal winds.  As it flows above seafloor ridges and through gaps like 
the Drake Passage, Rossby waves are excited; they tend to be standing waves with zero 
phase speed, a meandering of the current.  In the atmosphere one is almost always dealing 
with waves on top of mean winds. As a basic model, suppose there is a strong zonal flow, 
u = U, a constant.  We then must retain the advective term U∂ζ/∂x  in the vorticity 
equation. This adds a term to Eqn. (14.17) which becomes 
     2 2 0t x xUψ ψ βψ∇ + ∇ + =  
Substituting the usual plane wave solution we find the modified dispersion relation,  
     2 2/( )Uk k k lσ β− = − +  
where we have temporarily neglected the term 1/λ2, appropriate to waves shorter than the 
Rossby deformation radius, L << λ. 
 
 Consider standing waves with zero frequency (the waves have a non-zero frequency 
for an observer moving with the mean flow, given by the usual dispersion relation).  The 
wave equation becomes closely related to Helmholtz’s equation: 
     2( ) 0

x U
βψ ψ∂

∇ + =
∂

      (14.24) 

with dispersion relation 
     2 2/( )Uk k k lβ= +  
which has two solutions,   
 2 20; /k k l Uβ= + = . 
as shown in Fig. 14.13. The second solution is simply a circle in wavenumber space and 
exists only for U>0; because of their intrinsic westward phase propagation relative to the 
fluid, Rossby waves can stand still on an eastward current.  All waves generated in this 
way have the same wavelength, 2π(U/β)1/2.   The group velocity vectors are normal to the 
circle, as usual, yet they point always with a component downstream (eastward).  It is easy 
to sketch the wave pattern generated by a localized, small source of waves near the origin, 
x=y=0.  The isotropic nature of the wavenumber circle in Fig. 14.13 determines that the 
wavecrests are also circular. With the group velocity directions as above, the waves appear 
only downstream, so they have semi-circular wave-crests.  It is a good exercise to 
construct these results graphically by adding the intrinsic group velocity to a uniform 
eastward velocity (U,0). In doing so one finds that the magnitude of the group velocity in 
this new situation varies as cos(θ), and hence if the wave source is switched on at some 
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initial time, the Rossby wave wake will fill out in a circle whose radius increases with 
time. In particular the region filled with waves expands downstream in advance of the 
current, at just twice the velocity (U,0) of the mean flow. {A simple graphical procedure for 
constructing the wave-crest pattern on the (x,y) plane from the locus of possible wavevectors on the (k,l) 
plane is described by Lighthill (1968): see Appendix ¤}.  
 
 The figure 14.14 shows the exact linear solution, McCartney (1975) where the 
waves are generated by flow over an idealized mountain (dashed circle). The shape of the 
wave-crests carries with it information about the transport of momentum by the wave, 
which will be discussed in Chap. 17. 
 
  

   
Figure 14.13  Locus of wavenumbers for barotropic Rossby waves,  generated either by a uniform eastward flow over a 
topographic mountain, or by a forcing effect that moves steadily westward over initially still fluid.   
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Figure 14.14  Rossby waves on an eastward current generated by a small ‘mountain’ (a right circular cylinder at the origin); 
from McCartney (1975).  This is an exact linear-wave solution of the steady PV equation. The semi-circular wavecrests 
predicted by theory can be seen in the lee of the mountain.  Note that cyclone downstream of the mountain; its low pressure, 
compared with the flow upstream, exerts a wave-drag on the topography which is expressed as a flux of zonal momentum in 
the wave-field.  
 
 The first of the two solutions of the dispersion relation is quite remarkable. It looks 
as if it should be thrown away. Yet, k=0, if understood as a limiting case where k << l, is 
very much a Rossby wave, with wave-crests lying nearly east-west.  The frequency 
relative to the fluid nearly vanishes for such a wave, yet look at its group velocity: it is as 
large as it can be, and in a frame of reference moving with the fluid, the group velocity is 
westward.  The direction of the group velocity in the frame of reference fixed with the 
mountain, in this limit is east or west.  The sign depends on whether the intrinsic group 
velocity (relative to the fluid) is greater or less than U. Since the intrinsic group velocity 
defined in this way is (-β/l2, 0) for k=0, then the total group velocity in the frame of 
reference of the mountain is (U-β/l2,0). The sign change occurs at l2 = β/U,  at the radius of 
the circle of wavenumbers for the 2d solution. The longer waves propagate upstream and 
act to block the flow; shorter waves are carried downstream; see Lighthill (1978).  The 
straightness of the l-axis which ‘generates’ the blocking waves tells us that the group 
velocity does not diverge (always points due west or due east); this says that the blocking 
pattern propagates far upstream and downstream with little reduction in strength.  
 
 14.10  Baroclinic Rossby wave modes in a stratified ocean. The study of long 
baroclinic waves is of interest to both time-dependent ocean currents and the mean 
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circulation. As we have argued earlier, waves are the forerunners that set up circulation, in 
initial-value problems (as in switching on the winds) and in course of seasonal and longer-
period variability of the forcing effects. Density stratification allows Rossby waves to 
propagate in all three spatial dimensions, just as it does with internal gravity waves.  In 
fact we have already done much of the work needed to study the baroclinic waves, because 
of the separable nature of the β-plane equations with uniform depth and horizontally 
uniform stratification (under the traditional approximation, neglecting the horizontal 
component of Earth’s rotation vector).  This means that the equation for the vertical 
structure of Rossby waves is the same as that for internal gravity waves without rotation 
(subject only to possible differences in upper and lower boundary condition).   
 
 For the oceanic case we make the Boussinesq approximation, because the scale 
height of the density field is so large compared with the depth of the ocean. The β-plane 
approximation is accurate to order L/a in middle latitudes, and to order (L/a)2 in the 
Equatorial zone.  The mid-latitude synoptic-scale potential vorticity equation (13.42) is 
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     (14.25) 

 
The Boussinesq approximation is also used here, eliminating applications involving ‘tall’ 
atmospheric disturbances. The familiar relative vorticity, ‘stretching’ and planetary 
vorticity components of the PV are all active to some degree in baroclinic Rossby waves  
but scale analysis of q shows that for horizontal length scales, L, greater than the Rossby 
deformation radius, λ, the relative vorticity contribution becomes small. The symbolic 
forcing term F and dissipation D will be developed later. 
 
 The wave equation follows from the neglect of the nonlinear terms in (14.25): 

    
2

2 0
2( ) 0t z z x

f
N

ψ ψ βψ∇ + + =      (14.26) 

Disregarding the top and bottom boundaries for the moment, we note that the coefficient 
of the middle term in the equation is a function of z only, and therefore there are solutions 
in which the vertical dependence is separated out, having the form 
    ˆ( ) ( , , )z x y tψ ψ= Ξ       (14.27) 
The simplest case occurs with uniform density stratification, N = const., for which the 
substitution of a three-dimensional plane wave,  ψ = Re(exp(i(kx + ly +mz - σt))), yields 
the dispersion relation 
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    (14.28) 

Here we continue use of the term ‘Rossby deformation radius’ to mark the horizontal 
scales at which potential energy and kinetic energy are comparable in size, we have a set 
of Rossby radii which depend on vertical scale of the waves, 
     

0
BC

N
f m

λ = . 

For more complicated stratification profiles, the more general form (14.27) 
is substituted in Eqn. (14.26) and divide by Ξψ; just as we found with internal gravity 
waves the equation contains some terms dependent on z only, and others dependent on 
(x,y,t) only: each of the two groups must vanish separately or at most be equal to a 
constant A: 
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This allows us to solve for the vertical structure, Ξ(z), once and for all.  Equation and 
boundary conditions together form an eigenvalue problem for A. The Rossby deformation 
radius emerges from this eigenvalue problem.  The boundary conditions are 
    ψz = 0 at z = 0, -H 
Strictly speaking, these follow from the vanishing of vertical velocity, w, at the boundaries 
(ψz is proportional to density perturbation ρ’ which also vanishes, because in this situation 
ρ’ can only arise from vertical movement of the basic stratification). The fact that the 
surface is free, and moves slightly, adds a slight error proportional to the amplitude of the 
wave. For density stratification typical of the Earth’s oceans, this is a very small error. 
 
For the choice above, uniform density stratification, the vertical modes with boundary 
condition of vanishing vertical velocity at top and bottom are 
    cos( ), / , 1, 2,3....mz m n H nξ π= = =  
representing pairs of upward and downward traveling waves that form a standing mode 
with stationary horizontal nodes. The resulting equation for the horizontal structure of the 
wave is just Eqn. (14.26) and plane waves have the form 
    cos( )exp( )mz ikx ily i tψ σ= + −  
with the dispersion relation (14.28).  The oceanic baroclinic Rossby wave dispersion 
relation has just the same form as the barotropic wave equation with a free surface,  and as 
in that case, waves shorter than λBC have dominantly kinetic energy while waves longer 
than λBC are dominated by potential energy associated with vertical displacement of the 
isentropic surfaces.  The ‘gravest’ Rossby radius, for the lowest baroclinic mode n=1, (λBC 

= NH/f0π for uniform N)  is a key descriptive parameter of the water column, and the 
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complete set of Rossby radii are conveniently expressed as cn/f0, where cn is the horizontal 
phase speed of long, nearly hydrostatic internal waves in the nth vertical mode.  
 
 For oceanic scaling, baroclinic Rossby waves propagate very slowly at mid- to high 
latitude, though their phase speed increases substantially near the Equator.  With typical 
ocean stratification the first vertical mode (n = 1) has phase speed of  2 to 5 cm sec-1, so 
that at 300N latitude it takes of order 10 years to cross the Atlantic ocean. Yet the waves 
are important in controlling the structure of the general circulation, which is the subject of 
Chap. 15.   
 
 Long, linear baroclinic Rossby waves are non-dispersive. They simply propagate 
westward without change of form.  This is the limit L >> λBC, for which the dispersion 
relation becomes 

     
2

2 2
BCk

m H
βλσ = −  

so that the ‘gravest’ mode, n = 1, or m=π/H, moves westward with speed 2 2/BCβλ π .   
 
 Satellite altimetery exhibits a rich field of westward propagating waves, as seen, not 
in the displacement of constant-density surfaces, but in much smaller displacement of the 
sea surface.  The satellite altimeter can detect sea-surface heights with relative accuracy of 
order 1 cm. at these scales (a remarkable engineering accomplishment, in view of the large 
gravity waves on the surface).  We might expect these to be primarily barotropic Rossby 
waves, yet the greater energy present in baroclinic modes makes them stand out, even in 
the SSH field. Geostrophic balance for the velocity field shows that there must be such ups 
and downs of the sea surface, for hydrostatic balance to provide the lateral pressure 
gradients: typically, an eddy with height anomaly of 5 cm and lateral scale 500km has a 
geostrophic surface current of  gδη/fL ~ 1 cm sec-1 at middle latitude. Animations of the 
global SSH field, available from many sources on the Web, exhibit a rich parade of 
propagation, with striking westward propagation of features greater than 100km in width, 
downstream movement of eddies in boundary currents, and rapid Kelvin- and Rossby 
waves along the Equator.  Chelton and Schlax (1996) plot global maps of the sea-surface 
height anomaly (Fig. 14.15), and time-longitude structure of the sea-surface in the Pacific 
(Fig. 14.16). After spatial filtering to eliminate mesoscale eddies, the figure shows 
westward propagation, with speeds that decrease with latitude as expected.  In a striking 
affirmation of the non-dispersive limit of the theory, a single dominant speed occurs at 
each latitude. These are related to the n = 1 mode; the concentration of the density 
stratification in the upper ocean also concentrates the first baroclinic mode there, rather as 
in layered ocean model with a thin upper layer.  
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The variation of phase speed with latitude is shown in Fig. 14.17, for the Topex/Poseidon 
altimeter and the POP (Parallel Ocean Processor) model calculations of Semtner and 
Chervin (1992). The phase speeds vary qualitatively with latitude as predicted, yet effects 
of bottom topography, mean currents, and forcing by wind-stress curl apparently cause 
some quantitative disagreement. We are at an early stage of understanding the rich 
structure seen in this field, but the role of the β-effect and relevance of Rossby wave 
dynamics seems to be clear. The global fields provide space-time structure for ENSO 
cycles, annual cycles, decadal climate variability of the general circulation, and oceanic 
heat storage. 
 

   
 
Figure 14.15  Snapshots of sea-surface height anomaly, spatially smoothed to emphasize scales longer than those of mesoscale 
eddies (Chelton and Schlax, 1996).   
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Figure 14.16  Satellite altimeter observation of the sea-surface height field in the North Pacific,  Chelton and Schlax (1996), Kelly and 
Thompson (2003) as time-longitude plots.  Note the well-defined westward propagation speeds, which increase with latitude.  Time 
progresses upward, and we are watching over 8 years.  These waves are slow!  They are most likely n=1 mode Rossby waves in the 
upper ocean, with the thermocline acting as a ‘free surface’ with a reduced gravity, so that λBC ≅ 50 km or so.  There is a strong signal 
at annual period as well as shorter period activity. 
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Figure 14.17   Phase speeds estimated from 7 years of T/P data (a) and 3 years of Run 11 of the POP model (b) based on the 
classical theory (solid line) and from the T/P and POP SSH fields in the Pacific (solid circles) and the Atlantic and Indian 
oceans (open circles). The ratios of the observed phase speed to the phase speed predicted based on the classical theory is 
shown in bottom panel (Chelton and Schlax, 1996). 
 
 A simplified view of long baroclinic waves.   The long-wave limit L >> λBT  of the 
baroclinic wave problem applies to much of the eddy, wave, and circulation structure of 
the oceans, because λBT ranges from roughly 100 km to less than 10 km at high latitude.  
This limit leads to such a simple equation (and hopeful suggestions of simple solutions) 
that its physics must be essentially different from the general case of PV conservation.  We 
have seen that the relative vorticity then makes a negligible contribution to PV,  O((λBT 
/L)2 ,(λBC /L)2) for the respective barotropic and baroclinic waves.  This means that ‘stiff-
column’ dynamics inherent in the Sverdrup balance, Chap. 12, becomes valid.  For clarity 
let us think of a laboratory experiment (Fig. 14.18) in which the β-effect is provided by an 
analogous slope of the upper and lower rigid boundaries. The fluid is comprised of two 
layers of equal mean thickness, and density difference ∆ρ.  The rotation axis is vertical 
(aligned with the fluid columns). We use the words ‘north’ and ‘west’ to correspond to the 
positive y- and negative-x directions. With the pattern of velocities sketched on the figure, 
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the north-south velocity forces a vertical velocity, just as if the columns were metal rods. 
This moves the interface vertically, causing the pattern to propagate westward. Thus the 
vortex-stretching and advection of neighboring fluid, so active in barotropic Rossby 
waves, is absent here. It is a ‘kinematic’ sort of wave, without much classical vorticity 
dynamics.  An inclined-plane relation connects vertical and horizontal velocity: 
 
    22 tvα = η       (14.29) 
 
where α is the magnitude of the slope of both top and bottom, and wi is the vertical 
velocity of the interface. [This may be derived by expanding the ‘shallow-water’ 
expression for mass conservation in the form  
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by neglecting nonlinear terms and keeping α small. The total mean depth in the two layers 
is h1 and h2, respectively, and η is the vertical displacement of the interface.]  
 

   
Fig. 14.18   View from the southeast of a long, baroclinic Rossby wave in a two-layer fluid.  This represents a laboratory 
experiment with upper and lower boundaries sloping to provide a variation in mean potential vorticity in each layer.  In the left 
panel, with the velocities chosen, columns of fluid move north and south, in a pattern allowed by thermal-wind shear at the 
interface.  Being stiffened by planetary rotation, they force the density interface downward at the left and upward at the right. 
The result is a propagation of the pattern to the left (‘westward’) as seen in the right panel.  
 
Because the top and bottom are rigid, and the fluid acts as if it were, the average north-
south velocity must vanish: 
    2 1v v= −  
and the thermal-wind balance (in the form of Margules two-layer relation) is 
    1 2 12 ( '/ ) xv v v g f− = = − η       (14.30) 
where g’ = g∆ρ/ρ0. Eqns. (14.29) and (14.30) combine to give 
    0 0t xcη + η = . 
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where c0 = αg’/f. Because the same PV gradient is provided by β and a bottom slope 
obeying β = f hy/h, we can express the wave-speed in terms of this effective β:   
    2 2

0 ' / 4c g H fβ βλ= =      (14.31) 
where λ is the Rossby deformation radius. The general solution of (14.31) is a simple 
westward propagation of initial conditions η = η0(x,y) without the distorting effects of 
dispersion, 
     0 0( , )x c t yη = η +      (14.32) 
The connection with the spherical Earth comes from the ‘stiffness’ rules described earlier, 
and from application of the ideas of Chap. 12 to a two-layer fluid on a sphere.  This 2-layer  
model of the β-plane can be built as a physical laboratory experiment, and Ohlsen and Hart 
(1989) have carried out meticulous observations of baroclinic waves with the β-effect.  
Unfortunately it is not easy to extend the laboratory analogy to a continuously stratified 
fluid, because the Ertel potential vorticity of such a fluid is uniform along isopycnal 
surfaces (which lie parallel to the paraboloidal equipotential surfaces of a rotating 
laboratory experiment), although exotic ferromagnetic fluids may one day make this 
possible (Ohlsen and Rhines, 1997).    
 
 A simplified expression for the set-up of the wind-driven ocean circulation.  
Incorporating wind-forcing in this two-layer model, leading to a vertical velocity we(x,y,t) 
at the top of the fluid, we have the forced wave equation 
    1
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If the fluid is initially at rest and the windstress suddenly switches on at time t=0, the 
general solution is 
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This, when plotted, is an intriguing pattern in which the initially flat interface and 
motionless fluid gradually separates into two dynamical parts: a westward propagating 
circulation with the shape of the Ekman forcing and, left behind, a steady circulation of the 
opposite sign which is the steady Svedrup flow.  The transient flow propagates out of the 
picture to the west as no lateral, coastal boundaries are present here. As it departs the 
region of wind forcing it shuts down the horizontal circulation below the interface and 
doubles the circulation above the interface. In the solution above, there is an implicit 
appeal to the fast propagation of barotropic Rossby waves. Even though absent from the 
equations, we assert that once the wind begins, a barotropic mode Rossby wave is 
generated and propagates rapidly, ‘instantaneously’ in these dynamics, out of the picture. 
Left behind are the initial conditions for the baroclinic wave and circulation, with η = 0 yet 
a barotropic velocity field satisfying the Sverdrup relation, 
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    1
1 2 0( / ) ( , )ev v f H w x yβ −= =  

 The propagation of baroclinic Rossby waves is extremely slow (Fig 14.14), yet they 
may still exert control on the set-up and variability of general circulation, and their 
propagation speed increases rapidly as one approaches the Equator (as βλ2 varies like 
(latitude)-2 near the Equator; close to the Equator it is replaced by the ‘Equatorial Rossby 
Radius’, √(c0/β )).  Baroclinic Rossby waves are essential components of el Niño-Southern 
Oscillation cycles in the tropical Pacific, one of the dominant interannual climate cycles on 
Earth.  
   
   14.11  Baroclinic Rossby  waves in a stratified atmosphere.  The atmospheric 
general circulation is global, with seemingly  great dynamical connections between tropics 
and and higher latitude. In both the zonal and meridional circulation, Rossby waves and 
other related wave forms are active in establishing these connections, and indeed in 
shaping many aspects of the circulations.  
 
 Modern observations make it possible to make thorough, global, 4-dimensional 
analyses of the atmospheric circulation, including the eddy-, wave- and jet- structures 
down to a 100 km or so horizontally and roughly 500m vertically. The wintertime mean 
dynamic height field at 300mb in the upper troposphere is plotted in Fig. 14.19, and 
superimposed on it, the absolute vorticity, ζ + f.  While this rather subtle long-wave 
pattern (roughly two ridges and two troughs round a latitude circle) does not much 
resemble the simple standing Rossby wave in Fig. 14.14, they have much in common. Low 
pressure troughs sit in the lee of the Himalayan Plateau and Rocky Mountains. 
Continuation of the pressure field down to the surface verifies that this weakly baroclinic 
mode exerts a  strong wave-drag on the topographic slopes. 
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Figure 14.19.  Streamlines (solid) and absolute vorticity, ζ + f, averaged at 300 HPa level in the upper 
troposphere (figure from Lau, 1979). The deviation of the streamlines from circles is a wave pattern 
analogous to Figure 1.  If this were simply barotropic Rossby waves, the dashed and full lines would 
coincide. Continents are shown with dotted curves; North America is at the bottom of the figure.   
 
 
  The analysis developed so far will, with slight modification, act as a model for 
atmospheric Rossby waves. What distinguishes them is the large density gradient in the 
atmosphere, and its compressibility, compared with the much more ‘Boussinesq’ ocean, 
where the density changes by perhaps 2% from surface to sea floor.  The greater 
stratification of the atmosphere, such that λBC ~1000 km there rather than 10 to 50 km as 
in the oceans, combined with the open geometry of the atmosphere, yield energetically 
dominant flows with horizontal scales of 1000km-5000km. Also distinguishing them is the 
large zonal flow of the atmosphere, with forcing provided both by continental topography, 
and by land-sea contrast in heat flux and fresh-water flux. We nevertheless derive the wave 
equation afresh.      
 
   Rossby waves on a mean, stratified zonal circulation.  A compressible fluid has a 
mass conservation equation 
    D u

Dt
ρ ρ= − ∇ •

G  

with equation of state written in terms of the adiabatic sound speed cs as 
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uh is the horizontal velocity. Thus, because the vertical hydrostatic pressure gradient is so 
large, 
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This leads to vertical vorticity- and potential vorticity equations that are very similar to 
their Boussinesq counterparts.  We will derive potential vorticity equation 
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where Φ’(x,y,z*) is the perturbation to the geopotential height gz. q is very close to the 
exact Ertel-Rossby potential vorticity, but with a slight correction, as described in Chap. 
13. Here we are using log-pressure vertical coordinates,  (x,y,z) -> (x,y,z*) 
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The second relation corrects a minor error in Gill (6.17.29). Here the subscript ( )o refers to 
the rest state,  as in the larger vertical stratification ρo(z);  and ( )r  refers to constant 
reference values like ρr being the rest state density at 1000 mb. The scale height Hs is 
defined as pr/ρr.   z* is very close to the usual z-coordinate. If we keep in mind an 
isothermal/perfect-gas atmosphere as a comparison state, then the log-pressure coordinate 
z*   is simply proportional to true height z, and N* is just N (because the rest-state pressure 
and density then vary like exp(-gz/RT) ). 
 
   The velocity (u,v,w) becomes (u,v,dz*/dt), where the last term is w*, is the time rate of 
change of the log-pressure following a fluid parcel. In place of pressure we use 
geopotential height Φ(x,y,z*) ≈ gz.  It gives an oceanographer an uneasy feeling to see a 
motion-dependent variable like pressure used as an independent variable, but the 
overwhelming hydrostatic pressure balance helps to make this acceptable.  The appearance 
of ρ* and N* in the equation would seem to suggest extra nonlinearity, since both would 
change when the fluid is in motion.  This would be true, but the small variations in these 
variables are scaled out of the equation,  for the hydrostatically balanced mean pressure 
and density are the dominant parts.  
 
  Digression concerning  pressure coordinates.  Our normal vertical velocity, w, is dZ/dt where Z(t) 
is the height of a marked fluid parcel [Z is a Lagrangian quantity]. You can get the right answer in (x,y,z) 
coordinates in terms of the independent variable z (= vertical height), as  “Dz/Dt = ∂z/∂t+u∂z/∂x+w∂z/∂z 
= 0+0+w”, though it’s a bit poor use of notation, because the independent variable z is not a function of 
x,y,z that can be differentiated) . In the new system the pseudo-vertical velocity is ϖ=dP/dt for (x,y,p) 
pressure coordinates or dZ*/dt for log pressure coordinates where P(t) is the Lagrangian pressure of a 
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marked fluid parcel and Z*=Hslog(P/pr) is the corresponding log-pressure (or, as before you can get the 
right answer with independent variables x,y,p,  “Dp/Dt ≡ ∂p/∂t+u∂p/∂x+ϖ∂p/∂p = 0+0+ϖ”  and x,y,z*, 
”Dz*/Dt” though it’s a bit inconsistent).    
 
  .   The log-pressure vertical coordinate, and its relative, the simple pressure coordinate, are motivated in 
part by the simpler mass conservation equation: the mass conservation  

∂u/∂x+∂v/∂y+∂w/∂z=-(1/ρ)Dρ/Dt 
becomes non-divergent in pressure coordinates 
     0.x y pu v ϖ+ + =  

Ιn log-pressure coordinates, mass conservation is 
  ** * /x y z su v w w H+ + =  

  With the fluid so close to hydrostatic force balance in the vertical, the connection between z, z* and p is 
quite close.  Notice however that when we need physical vertical velocity, (to apply the lower boundary 
condition) then it has to be transformed carefully.  We have 

    t x y z
Dp p up vp p
Dt

ϖ = = + + +  

expressed in ‘old’ x,y,z system.The horizontal advection of p vanishes to order Rossby number in a quasi-
geostrophic flow, so with hydrostatic balance 

   
0

t
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where the righthand side derivatives are in the x,y,z system (or see Holton (2003)). Manipulation of these 
give the various mass conservation equations above, or one can derive it in x,y,p coordinates from scratch. 
Write  

   11 1( ) ( ) ( )z
p p z z z z

DpD Dp Dw p w
DT g Dt g Dt Dt

ρ ρϖ ρ
ρ ρ

−= = − = − − = −     

for quasi-geostrophic flow. Thus at a rigid horizontal surface, the ground, w vanishes but ϖ does not. The 
vertical velocity-like variables in the three coordinate systems are related by 

  w* = (gHs/RT)w -(foHs/RT)∂ψ/∂t 
        = -Hsϖ/p. 
 
 14.12 Vorticity dynamics.  The corresponding vertical vorticity equation is 
 

   2 2*
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β− = Φ + ∇ Φ                                  (14.34)   

 
which has just one new term due to compressibility. The density equation is 
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The general quasi-geostrophic potential vorticity equation in log-pressure coordinates 
comes from eliminating w* from the above two equations. This is most simply done by 
rewriting the LHS of  (14.34) as  
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and substituting the definition  ρ*=ρrexp(-z*/Hs).  The result is 
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Now we want to look at waves on mean zonal flow, defining zonal means and 
perturbations: 
 
    *' 0 ( , ) '( , , , )t x yq Uq vq q q y z q x y z t+ + = = +   (14.35) 
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The major new feature is the huge variation in ρ*(z*).  There is a standard technique in 
o.d.e’s, that removes  a variable coefficient from the highest-differentiated term in the 
equation, by a change of dependent variable (in general in such an equation a term like 
(a(z)ξ’)’ turns into   ϕ’’   by defining ξ=ϕ a-1/2 so that in terms of the new dependent 
variable ϕ  the operator  (aξ’)’=a1/2(ϕ’’+ (1/2 a’2/a2  -a’’/a)ϕ). In this spirit, let  
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  (14.36) 

Eqn. (14.35) is more general than Eqn. (14.36), where we suppose U to be gradually 
varying in y relative to the meridional  scale of the waves in order that the equation be 
separable.  The vertical velocity is related to the geopotential through the density equation 
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with the last term coming from the horizontal advection of the mean temperature, as 
expressed by the thermal wind.  This is important when it comes time to apply boundary 
conditions. 
 
  Now for ultimate simplicity take U and N* to be constant,  so that 
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This is identical to the oceanic Rossby wave equation but for the compressibility term.  
Notice the barotropic mode for m=0, in which the ridges and troughs of pressure are 
vertical, yet there is exponential decay of energy upward (despite the exponential increase 
in pressure perturbation with altitude). In this case the dispersion relation is exactly that of 
a single layer of constant density incompressible fluid with a free surface. The nature of 
the barotropic mode waves is very dispersive [phase speed depends on the wavevector (k,l) 
and group velocity does not point in the direction of the wavevector (k,l)]. But it changes 
radically when the lateral scale of the waves exceeds N*Hs  /fo, or  typically 1500km.  Then 
the barotropic mode begins to be non-dispersive, with c-U = -4βN*

2/fo
2  .  The waves 

propagate purely westward relative to the mean flow, at a single speed.  This kind of 
behavior encourages strong resonance for the stationary waves at latitudes where U is 
given by the righthand expression.  
 
   Thus, in the general case, baroclinic Rossby waves propagate relative to the 
westerly wind, at speed βL2  determined by  L,  the smallest of 3 length scales: the Rossby 
deformation radius N*/fm based on the vertical scale of the wave 1/m; the horizontal 
wavelength-scale  (k2+l2)-1/2, and the scale N*Hs/fo,essentially the Rossby radius based on 
the density scale height.  It is usual to plot the frequency as a function of (k,l,m) 
wavenumbers. This can be done a number of ways, for example fixing a few values of m 
and plotting ω(k,l;m).  This has the shape of a ‘witch’s hat’, similar to Fig. 14.13, a 
lopsided peaked hill with a broad ‘brim’.  The altitude contours (ω=const.) are circles 
lying to in the left half plane k<0.   The maximum frequency lies on the l=0 axis, where k2 
is equal to the two stratification dependent terms.  The gradient vector of the witch’s hat is 
the horizontal group velocity. 
 
  Another way to do this is to plot surfaces in fixed  ω in the (k,l,m) plane. For the special 
choice ω=0 (or c=0, that is stationary waves) these are tall ellipsoids symmetric about the 
vertical, m-axis, with radius in the m=0 plane, call it kc,, given by  (β/U- fo

2/4N*
2Hs

2)1/2.  
Waves with horizontal wavenumber √(k2 + l2) > kc cannot propagate, and if excited they 
will be evanescent (exponentially decaying) in the vertical.   The possible solutions are 
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  This is quite a remarkable result. We can rescale the figure by using ‘Prandtl ratio 
stretching of the horizontal relative to the vertical’; plotted with axes (k,l,fom/N*) the 
figure becomes a simple sphere!  Thus the possible waves which are stationary in a 
uniform zonal flow U have wave-vectors of the same length, lying in all possible 
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horizontal and vertical directions.  The dual of this stretched k-space is a stretched x,y,z 
space.  The group velocity, which tells us the energy propagation direction and speed for 
rays of  Rossby wave energy, lies normal to the sphere, thinking of the rays propagating in 
(x,y,N*z /fo) space. If we draw a zonal section in stretched space (x, z*N*/fo) the orientation 
of the phase lines (wave crests) will be perpendicular to the rays of energy propagation 
(the group velocity). Upward energy propagation requires a wave-vector pointing 
westward/downward, implying wave-crests that tilt westward/upward. The other possible 
root, k=0, describes nearly horizontal velocity perturbations that can propagate upstream 
or downstream from a region of forcing. They are nearly-zero-frequency Rossby waves 
that play the role of wakes and upstream blocking flows, and have large group velocity 
despite their small frequency.  
 
 The upstream tilt of the wave-crests of stationary Rossby waves is one of the most 
famous results of dynamical meteorology. It is indeed observed (Fig. 14.20), and it carries 
with it strong implications to poleward heat flux, upward flux of zonal momentum and 
meridional PV flux by the waves. This momentum flux opposes the strong polar cyclonic 
vortex in the stratosphere and, in most northern hemisphere winters, causes the ‘sudden 
stratospheric warming’ which is really the sudden braking of the vortex, and adiabatic 
relaxation of the potential temperature.   While the quasi-barotropic, m  = 0, mode has no 
such tilt, excitation by the topography apparently picks out a range of values of m.  
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Figure 14.20. Cross-sections of the geopotential height (in meters) of the atmosphere at 600N (a, upper); 
450N (b, middle) and 250N (c, lower). This is the flow averaged in time during the winter season.  Here 
the vertical axis is pressure-level and the horizontal axis is longitude.  To a good approximation this can 
be viewed as a plot of pressure with respect to actual altitude and longitude (figure from Lau, 1979).  The 
flow in Figure 14.19 cuts through this figure at the 300 Hpa level. A smoothed profile of mountain 
topography is shown, which shows low pressure on the lee slopes of the topgraphic rises.  
 
 
   What would the wave pattern look like, due to a source of energy in a smallish 
region at the ground? The symmetry of the spherical pattern tells us that the wave crests 
would also be spheres in the stretched space. But the group velocity directions are such 
that the spherical wave crests would appear only in the lee of the mountain, with an 
eastward (westerly) wind. In unstretched physical space the waves would be ellipsoids, 
long and skinny in the x-direction, pointing like half-sausages in the lee of the mountain. 
This is an outline of the ‘ray theory’ of stationary Rossby waves, involving techniques that 
can be found in Lighthill’s text on waves (1978). Hoskins and Karoly (1981, 1982) and 
many other authors pursue other aspects of the ray theory, following the waves through 
major changes in zonal velocity and latitude.  Generation by flow over topography may 
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select out some favored band of horizontal wavenumbers. If the favored k is significantly 
less than kc we will see very tilted wavecrests in the either streteched or real coordinates. If 
is close to kc we will see quasi-barotropic waves with nearly vertical wavecrests (or 
constant-phase surfaces).  
 
    14.13 Vertical penetration.  Charney and Drazin (1961) noted this expression for 
m2, the ‘refractive index’ of the atmosphere. Taking c=0, we see that upward propagating 
waves, with m2 > 0, occur only for westerly (eastward) winds that are ‘slow enough’, at a 
given east-west wavenumber, k, or for waves that are ‘long enough’, for a given, fixed 
westerly windspeed.  The sizable westerlies dimininish upward into the stratosphere in 
summer, where easterlies are instead found. Planetary waves that are stationary cannot 
escape the troposphere then, for they are reflected where m2 changes sign.  In winter, 
however, the radiative cooling of the stratosphere drives a zonal circulation  in the form of 
a polar vortex with strong westerlies exceeding 60 m/sec in the zonal average, at 60km 
altitude.  This ‘polar night jet’  invites upward propagation, and the wintertime troposphere 
has intense westerlies itself, making much large scale energy available. Observations 
indeed show ample long-wave energy reaching into the stratosphere then.  Typically 
waves of lateral scale > about 1500 km escape upward. The ray theory (short-wavelength 
approximation, which doesn’t sound very adequate for this kind of motion) shows 
interesting and complex paths that lean equatorward (Karoly and Hoskins, 1982). 
 
 To see more deeply into this problem, we want to reconsider the wave equation, 
fixing the east-west wavenumber, k, and looking at the remaining general structure in the 
meridional, y-z plane. Consider for simplicity the case of uniform N*

2. For stationary 
waves, c = 0, Eqn. (14.35) with mean westerly wind U(y,z), let  ψ = exp(ikx)exp(Z/2H) 
Φ(y,z), giving 
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In the meridional plane, the rather complex propagation problem for a single zonal wave 
reduces to a familiar Helmholtz equation; although Rossby waves are dispersive, they 
propagate in this reduced problem like non-dispersive light or sound (keeping in mind hat 
their wavelength in this plane should be small for literal ray-tracing solutions to be 
effective). Here ν2 is the index of refraction for the waves; simple refraction occurs, in 
which rays bend toward regions of large index of refraction (that is, regions of slow wave-
speed), and their paths can be sketched on a plot of ν2. Solutions of this equation are wave-
like where ν2 is greater than zero, and waves cannot penetrate regions where ν2 is negative; 



 50

only a small tail of the disturbances reaches inside such regions.  In particular, the waves 
can penetrate only where U falls in the range 
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Figure 14.21 Numerical model experiments from Chen and Robinson (1993). First panel: mean east-west 
wind used in the model. Second panel: refractive index for steady zonal wavenumber 2. Dark band has 
high positive values. Third panel: propagation paths (group velocity vectors) for idealized Rossby waves, 
refracting toward the Equator (toward large refractive index, or large wavespeed) with height. Contours 
show the convergence of the Elliasen-Palm flux, which exerts a westward force on the general circulation; 
it is particularly strong in the tropics where U goes to zero.   
 
 14.14  Refraction and wave-guides for the quasi-barotropic mode.   Rossby waves 
in the m=0 mode follow horizontal propagation pathways (‘rays’) in an approximate sense, 
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and these rays are bent by variations in large-scale PV from the time-averaged winds,  the 
thermal structure, and topography of the solid Earth. Preferred paths (‘waveguides’ or 
‘ducts’) of the waves are created in this way, for example in the core of the westerly winds, 
along the Equator, and in the upper polar troposphere. 
 

Some of the topographically induced standing wave patterns of the atmosphere are 
at least in part are attributable to Rossby wave dynamics. Consider now the kind of 
perturbation to the mean standing-wave circulation arising from an additional source of 
waves, as in Figure 14.22. For example, during el Nino events in the Pacific, the 
extraordinarily warm sea-surface temperature can excite waves in the atmosphere passing 
above, and the ‘Pacific-North America’ or PNA pattern resembling the model, Fig. 14.22,  
is the dominant empirical orthogonal function of the Pacific-North America sector.  Yet it 
is found that the wave pattern generated is sensitive to the location (east and  

   
 
Figure 14.22.   Trains of Rossby waves propagate in both hemispheres from a modeled source of 
cumulus-convective heating in the western equatorial Pacific. The model takes the observed, fully three-
dimensional structure of the circulation, and calculates the change in the winds arising from tropical 
heating by the warm ocean (figure from Jin and Hoskins, 1995). The waves move eastward along (very 
approximately) great-circle paths. Plotted contours show the north-south wind (not including that of the 
time-averaged winds) in the upper troposphere, contour interval 0.5 meters per second.  
 
west) of the forcing region; this would not be the case for a simple Rossby wave problem.  
We must generalize the restoring effect for Rossby waves to include pv gradients in the 
mean winds themselves. In equation (6)  β is replaced by qy = β - Uyy for this barotropic 
model.  Now consider what this does. The curvature  of the U(y) profile (which is the 
gradient of relative vorticity) is subtracted from β.  For an easterly jet, the q(y) profile now 
has a ‘flat spot’ with small pv gradient cut like a plateau in the ‘β hillside’.  A westerly jet 
gains a concentrated gradient at the core of the jet.  The concentration of vorticity in the 
mean flow augments the β-effect for the case of the westerly jet: it is the simple sum of the 
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planet-scale PV and the vorticity of the time-averaged winds that counts.  The ray paths 
describing propagation of groups of short Rossby waves will bend toward from regions of 
large β*, defined by  

      β*  = 
1/ 2/dq dy

U
⎡ ⎤
⎢ ⎥⎣ ⎦

     

In this way waves will be deflected away from an easterly jet and trapped inside a westerly 
jet, which thus acts as a wave-guide.   
 
Three panels in Figure 14.23 show the observed mean winter westerly wind, the barotropic 
pv gradient, dq/dy, and the effective restoring term β*.  Using similar, but three-
dimensional fields from observations, linear Rossby waves were generated by a stationary  

   
 
Figure 14.23 Upper: Mean westerly wind speed in northern-hemisphere winter. Middle: mean north-south 
barotropic potential vorticity gradient, β-∂2U/∂y2.  Note the large values in the mean westerly jets. Lower: 
effective restoring force for Rossby waves, β*. Heavy line in lower panel is a concentration of high values 
of β* at critical lines. Zero lines are dotted, negative are dashed.   The Greenwich meridian is marked with 
an arrow. (From Hoskins and Ambrizzi, 1993). 
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source of vorticity {a twisting force in a small part of the fluid } as an exploratory 
computer experiment (Figure 14.24). The size of the forced region is about 300 of latitude. 
The waves indeed follow the westerly Northern Hemisphere jet. Preferred propagation into 
and out of the tropics occurs (Figure 14.23) at longitudes where the zonal winds are weak 
or westerly, rather than the more usual easterly winds. Lines along which U=0 lead to 
infinite values of β*, and these ‘critical lines’ tend to reflect Rossby waves, after a certain 
amount absorption of their wave activity and momentum. Computer models are sensitive 
to the way such regions are handled, and to the levels of frictional damping assumed in 
their formulation, leading to lingering uncertainty about many features of the circulation.  
 

  
 
Figure 14.24. (From Ambrizzi and Hoskins, 1997). Meridional wind anomaly at day 10 for circular heat 
source at 200N, 00E, with December-January mean flow.  This is a three-dimensional model calculation, 
but with a wave environment dominated by the barotropic pv,  as in Fig. 14.23. 
 
 
 While the idea of Rossby waves having preferred wave-guides is attractive, and has 
been greatly developed in recent work (Branstator, 2002),  a slightly different 
interpretation of this experiment is that the jetstream itself is prone to meandering. It has a 
strongly concentrated pv gradient, and when disturbed it develops stable but intense 
oscillations, which have both stable and unstable components.  This is not quite the same 
thing as a Rossby wave-guide, and perhaps better describes the ‘capture’ of Rossby-wave 
energy by the underlying circulation.  
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 This idea has been extensively developed, and it is found that the time-averaged 
winter winds can actively contribute to the wave field, exhibiting barotropic instability 
which can resemble a simple train of Rossby waves. Thus, in the PNA pattern, describing 
the atmospheric response to a warm tropical Pacific ocean, energy can be added  to the 
wavetrain, transferred from the large-scale circulation, en route to North America. The 
weakly unstable modes are not easy to sort out because of the more rapidly growing 
baroclinic instabilities of the system.  
 
 A view of the development in time of a Rossby wave-train comes from a study of 
blocking patterns in the South Pacific (Renwick and Revell, 1999). Observations of winds 
at the 300 HPa level in the Pacific (Figure 14.25) show a structure that illustrates the 
development in time of Rossby wave propagation. Cumulus convection in the western 
tropical Pacific provides a large-scale pattern of divergent winds aloft. A train of cylones 
and anticyclones appears  
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Figure 14.25 From Renwick and Revell (1999).  A map showing the correlation between the north-south winds at 300 HPa 
level with the time series of southeast Pacific blocking.  The panel labeled D – 4 represents the correlation pattern 4 days 
before maximum blocking, and the sequence proceeds in time to 4 days after peak blocking. The apparent wave train 
propagates from Australia southeastward across the Pacific.  ‘Blocking’ here means a period of at least 5 days when the 500 
HPa pressure is at least 0.5 standard deviation above the norm.   The source of the wave train is thought to be cumulus 
convection in the western equatorial zone, and hence there is a strong correlation of warm el Nino periods with blocking 
patterns at higher latitude (SOI index:blocking index correlation reaches –0.8 during the past 15 years). 
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south of Australia and veers southeastward toward Chile, where it creates a lasting 
circulation cell strong enough to be called a ‘blocking’ pattern.  The figure shows 
correlations of the winds with a time series that expresses this blocking: the winds 
themselves form a similar pattern.  The waves arrive quickly (the speed of individual 
cyclones and anticyclones being about 50 of longitude per day, which appears to be slower 
than the southeastward development of the pattern as a whole). They decay slowly, 
influencing a vast region of the South Pacific and reaching into the South Atlantic.  In a 
simpler fluid than the atmosphere, convection in the tropics would stimulate a more local 
response: here, waves cause a ‘teleconnection’  round half of the circumference of the 
Earth.  
 
 14.15 Conclusions. Because Rossby waves exist throughout the depth of the 
atmosphere and oceans, they are not ‘superficial oscillations’, but rather an expression of 
forces acting on the entire circulation. An isolated cyclone, if it is large enough in size and 
weak enough in wind velocity, will ‘burst apart’ into Rossby waves, forming new, 
elongated cyclones and anticyclones that gradually fill the fluid with motion (Figure 
14.12). In this experiment the fluid itself oscillates gently, moving only slightly compared 
with the movement of the flow patterns. In the figure we have no mean westerly wind, so 
that most of the fluid is motionless. Stronger, more realistic cyclones do not radiate waves 
so efficiently, but the forces derived from the large-scale PV gradient are still at work, for 
example nudging hurricanes out of the tropics toward the poles.   

 
When the close-in views of theoretically solved Rossby waves are expanded to the 

whole sphere,  the waves tend to propagate along great-circle paths. While theory predicts 
their structure in the simplest circumstances, computer models must be employed if 
realistic mean wind patterns and land topography are included.  The modelled Rossby-
wave field generated by a similar pattern of equatorial heating by the ocean, Figure 14.22, 
has two branches propagating southeastward and northeastward from the western Pacific. 
The train of waves crossing North America is similar to the ‘PNA pattern’ which is 
associated with ENSO events (yet more will be said about this pattern in Chap. 15). 

 
What features of the atmosphere are explained in some way by Rossby waves?  

Begun a century ago as an exploration of weak oscillations of the atmosphere and oceans 
(for example, the tides raised by moon and sun) the theory of Rossby waves now provides 
insight into the very heart of atmospheric (and oceanic) circulation dynamics. These waves 
are related to the meandering north and south of the westerly winds and, less directly, to 
the synoptic eddies that shape our weather. Rossby waves contribute to understanding  the 
global pattern of  these westerly winds, the enhancement of cyclonic disturbances in the 
lee of major mountain chains, the location and shape of storm tracks in the western 
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Atlantic and western Pacific, some forms of blocking and stagnation of air masses, the 
propagation of energy in long waves upward to the stratosphere, the transport of east-west 
momentum with these waves and the attendant deceleration and ‘sudden warming’ of the 
wintertime vortex that sits above the North Pole. 

 
 Along the Equator, oceanic heat and water-vapor drive cumulus towers which heat 

the larger scale atmosphere. The winds converge below and diverge above such a heat 
source, and air pulled into the pattern creates a pattern of circulation extending both east 
and west from the heat source. Rossby waves propagating westward from the region of 
forcing control the shape of this pattern to the west, while Kelvin waves describe the 
movement east of the heating.  At a yet larger scale, the atmosphere signals the onset of el 
Niño in the tropical Pacific by sending a train of waves across North America: in simplest 
idealization these are Rossby waves (meanwhile, in the sea below, Rossby waves move 
westward along the Equator to reinforce the recurrence of el Niño).  In the lower 
troposphere in summer great anticyclones fill the North Atlantic and Pacific oceans, and 
these are established by monsoon forcing (intense summertime warming of the land 
surface) yet organized and shaped by westward propagation of low-frequency Rossby 
waves.  More distant relatives of the Rossby wave account for the basic instability of the 
primary, east-west atmospheric circulation: baroclinic instabilities which are the model of 
cyclonic storm development, tapping the potential energy of the atmosphere, and 
barotropic instabilities which tap the kinetic energy of the mean atmospheric flow. In the 
stratosphere, very large scale Rossby waves describe the undulations of the vortex sitting 
over the wintertime pole. They are excited by upward propagation of Rossby wave energy 
from the intense winter circulation below. The restoring force that gives us Rossby waves 
also inhibits mixing of fluid north and south, and in this way makes possible the ozone 
hole. 
 
 In the oceans, Rossby waves transmit energy preferentially westward, where it piles 
up along coastal boundaries. This leads, in the coming chapter, to theories of the Gulf 
Stream and other western boundary currents. Steered by bottom topography, 
Rossby/topographic waves are transmitted along wave-guides formed by the shallow 
continental shelves and continental rises, as well as mid-ocean ridges. The response of the 
ocean to forcing by wind-stress and buoyancy forcing involves both fast barotropic and 
slow baroclinic waves.  Over complex topography the equations are no longer separable, 
so that Rossby waves can jump from one vertical mode to another.  A family of trapped 
‘edge-‘ and ‘bottom-trapped’ topographic waves exists over sloping topography. Despite 
this complexity, the long-wave limit, with non-dispersive, westward propagating 
baroclinic Rossby waves, applies to a vast range of phenomena of lateral scale greater than 
the Rossby deformation scale, λBC.  
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 Before being completely carried away by the potency of the idea of linear Rossby 
waves, however, we have to warn that they are in competition with other forms of flow, 
particularly with turbulent, large-amplitude winds which are not waves at all. At the scale 
of the larger weather systems, the ‘flow’ dynamics and the ‘wave’ dynamics are nearly 
equal in importance.  Yet it experience shows that the effects of linear Rossby waves 
persist at surprisingly large amplitude, even in the presence of nonlinear effects:  
steepening of the waves, refraction and change in vertical mode structure. This is the 
subject of our most ‘advanced’ material in this text, Chapter 17.  
 

14.16  Historical notes. Large-scale waves on a rotating sphere were predicted with 
mathematical theory at the end of the 19th Century by Hough and Margules. Bernard 
Haurwitz (Figure 14.26), after leaving Germany in the early 1930s, derived the essential 
properties of these modes in a 1937 paper. His status as ‘enemy alien’ in the USA in 1942 
did not prevent the Army Air Corps from asking him to direct a research program on  
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Figure 14.26  Bernard Haurwitz, one of the pioneers of Rossby wave theory. 
 
weather forecasting.   Carl-Gustav Rossby (fig. 14.27) developed an elegant approximation 
known as the β-plane, with which the derivation of the waves is greatly simplified. As so 
often happens in science, the full force of the earlier theory did not become apparent until 
long after its discovery.  Rossby’s influential first paper on the 
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Figure 14.27. Carl-Gustav Rossby in 1926 or 1927, with a rotating platform designed to simulate the 
Earth’s rotation and produce waves and ‘weather’ (NOAA historic photo archive, 
http://www.photolib.noaa.gov/historic) 
 
subject  appeared in  the Journal of Marine Research in 1939 (reminding us that these 
waves do exist in both ocean and atmosphere). By emphasizing the simple propagation 
formula  Rossby successfully brought the ideas to bear on observations of the circulation. 
Before the era of computer simulation of the atmosphere, Rossby waves provided a 
foothold of dynamical theory in aid of weather forecasting. Much later, in the last quarter 
of the 20th Century, Rossby wave dynamics has filled out, like a powerful flood-light, our 
understanding of the dark corners of atmospheric dynamics. 
 
 
 

 


