Homework-04 Due Friday Oct.-14, 2005 (prior to class)

1. The linearized shallow water equations on an f-plane of constant depth H

$$
\begin{aligned}
& u_{\mathrm{t}}-\mathrm{fv}+\mathrm{g} \eta_{\mathrm{x}}=0 \\
& \mathrm{v}_{\mathrm{t}}+\mathrm{fu}+\mathrm{g} \eta_{\mathrm{y}}=0 \\
& \eta_{\mathrm{t}}+\mathrm{Hu} u_{\mathrm{x}}+\mathrm{H} v_{\mathrm{y}}=0
\end{aligned}
$$

allow waves of the form

$$
(u, v, \eta)=\left(u_{0}, v_{0}, \eta_{0}\right) \exp [i(k x+l y-\omega t)]
$$

where (k, l) are wave numbers in (x, y) directions, ω is a wave frequency, $\mathrm{i}=\sqrt{ }-1$, and subscripts denote differentions. This linear problem can also be written in matrix form as $\underline{\boldsymbol{A}}^{\bullet}(\mathrm{u}, \mathrm{v}, \eta)=0$ where $\underline{\boldsymbol{A}}$ is a 3×3 matrix of constant coefficients which for nontrivial solutions has a determinant $\operatorname{det}(\underline{\boldsymbol{A}})=0$.
(a) Find the dispersion relation for this class of waves by exploiting $\operatorname{det}(\underline{\boldsymbol{A}})=0$. [5pts]
(b) Find the solutions for velocity (u, v) and show that the velocity vectors describe ellipses with a ratio of minor to major axes is f / ω. [Hint: The problem is greatly simplified by choosing a co-ordinate system oriented in the direction of wave propagation, e.g., assume $\left.\eta=\eta_{0} \cos (k x-\omega t)\right]$. [10pt]
(c) Discuss the differences of horizontal current ellipes in the long- and short wave limits, e.g., for $\kappa \mathfrak{c} \ll 1$ and $\kappa а \gg 1$ where a is Rossby radius of deformation $a=(\sqrt{ } \mathrm{gH}) / \mathrm{f}$ and $\kappa=\sqrt{ }\left(\mathrm{k}^{2}+\mathrm{l}^{2}\right)$. Specifically, comment on the sense of current rotation and ellipticities. [5pts]
2. A wave has the dispersion relation

$$
\omega=-\beta_{0} \mathrm{a}^{2} \mathrm{k} /\left[1+\mathrm{a}^{2}\left(\mathrm{k}^{2}+\mathrm{l}^{2}\right)\right]
$$

where $\mathrm{a}=$ const. is the Rossby radius of deformation, β_{0} is the spatial gradient of the Coriolis parameter f , and (k, l) are wavenumbers in the east-west, north-south direction, and ω is the wave frequency:
(a) Find the phase velocities of these waves. [2pts]
(b) Find the group velocties for these waves. [3pts]
(c) Compare and contrast the phase and group velocities in the short and long wave limits. [5pts]

